Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-10-31
Page range: 409-420
Abstract views: 37
PDF downloaded: 2

The ITS-rDNA region as a complementary or alternative phylogenetic marker to 18S-rDNA in rumen ciliates (Alveolata, Ciliophora)

Faculdade de Ciências Alimentares e Agrárias, Universidade Rovuma, Mozambique; Laboratório de Protozoologia, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Campus Universitário, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
Laboratório de Diversidade Genética, Departamento de Genética Evolução Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas, SP
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, Brazil
Laboratório de Protozoologia, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Campus Universitário, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
Laboratório de Protozoologia, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Universidade Federal de Juiz de Fora, Campus Universitário, CEP 36036-900, Juiz de Fora, Minas Gerais, Brasil
Microbiome 18S-rDNA ITS1-5.8S-ITS2 molecular phylogeny ruminants Protist

Abstract

Rumen ciliates are important constituents of gastrointestinal microbiome of herbivorous mammals. They are traditionally classified based on morphological characteristics. However, molecular markers—mainly the 18S rRNA gene—have increasingly been used to investigate their evolutionary relationships. While the 18S gene provides reliable phylogenetic resolution at higher taxonomic levels, it lacks variability to distinguish closely related taxa. In this study, we evaluated the potential of the internal transcribed spacer (ITS) rDNA region as an alternative or complementary marker to the 18S rRNA gene for phylogenetic reconstruction of rumen ciliates. We generated and analyzed ITS sequences from rumen ciliate species and compared topologies obtained using three datasets: ITS alone, 18S alone, and a concatenated ITS+18S dataset. The concatenated dataset consistently showed improved resolution and support across several key clades, supporting its utility in Trichostomatia phylogeny. Some differences were observed, such as the variable placement of Troglodytella abrassarti, highlighting the importance of multi-marker approaches. Our findings demonstrate that the ITS region is a robust complementary marker that enhances phylogenetic resolution, especially when combined with 18S data.

References

  1. Bardele, C.F., Schulthei, S., Lynn, D.H., Wright, A-D.G., Dominguez-Bello, M.G. & Obispo, N.E. (2017) Aviisotricha hoazini n. gen., n. sp., the morphology and molecular phylogeny of an anaerobic ciliate from the crop of the Hoatzin (Opisthocomus hoazin), the cow among the birds. Protist, 168 (3), 335–351. https://doi.org/10.1016/j.protis.2017.02.002
  2. Boscaro, V., Carducci, D., Barbieri, G., Senra, M.V.X., Andreoli, I., Erra, F., Petroni, G., Verni, F. & Fokin, S.I. (2014) Focusing on genera to improve species identification: Revised systematics of the ciliate Spirostomum. Protist, 165, 527–541. https://doi.org/10.1016/j.protis.2014.05.004
  3. Cameron, S.L., Adlard, R.D. & O’Donoghue, P.J. (2001) Evidence for an independent radiation of endosymbiotic litostome ciliates within Australian marsupial herbivores. Molecular Phylogenetics and Evolution, 20, 302–310. https://doi.org/10.1006/mpev.2001.0986
  4. Cameron, S.L., Wright, A-D.G. & O’Donoghue, P.J. (2003) An expandedphylogeny of the Entodiniomorphida (Ciliophora. Litostomatea). Acta Protozoologica, 42, 1–6.
  5. Cameron, S.L. & O’Donoghue, P.J. (2004) Phylogeny and biogeography of the “Australian” trichostomes (Ciliophora: Litostomata). Protist, 155 (2), 215–235. https://doi.org/10.1078/143446104774199600
  6. Cedrola, F., Rossi, M.Dias, R.J.P., Martinele, I. & D’Agosto, M. (2015) Methods for Taxonomic Studies of Rumen Ciliates (Alveolata: Ciliophora): A Brief Review. Zoological Science, 32, 8–15. https://doi.org/10.2108/zs140125
  7. Cedrola, F., Dias, R.J.P., Martinele, I. & D’Agosto, M. (2017) Description of Diploplastron dehorityi sp. nov. (Entodiniomorphida, Ophryoscolecidae), a new rumen ciliate from Brazilian sheep. Zootaxa, 4258 (6), 581–585. https://doi.org/10.11646/zootaxa.4258.6.8
  8. Cedrola, F., Senra, M.V.X., Rossi, M.F., Fregulia, P., D’Agosto, M. & Dias, R.J.P. (2020) Trichostomatid ciliates (Alveolata, Ciliophora, Trichostomatia) systematics and diversity: Past, present, and future. Frontiers in Microbiology, 10, 2967. https://doi.org/10.3389/fmicb.2019.02967
  9. Cedrola, F., Martinele, I., Senra, M.V.X., Furtado, E.J.D.O., D′agosto, M. & Dias, R.J.P. (2021) Rediscovery of Plasmodium (Huffia) huffi (Apicomplexa, Haemosporida): a lost lineage from toucans. Parasitology Research, 120 (9), 3287–3296. https://doi.org/10.1007/s00436-021-07273-x
  10. Cedrola, F., Senra, M.V.X., Fregulia, P., D’Agosto, M. & Dias, R.J.P. (2022) Insights into the systematics of the family Ophryoscolecidae (Ciliophora, Entodiniomorphida). Journal of Eukaryotic Microbiology, e12915. https://doi.org/10.1111/jeu.12915
  11. Cedrola, F., Gürelli, G., Senra, M.V.X., Morales, M.J.A., Dias, R.J.P. & Solferini, V.N. (2024) Phylogenomics corroborates morphology: New discussions on the systematics of Trichostomatia (Ciliophora, Litostomatea). European Journal of Protistology, 95, 126093. https://doi.org/10.1016/j.ejop.2024.126093
  12. Chen, X., Ma, H., Al-Rasheid, K.A.S. & Miao, M. (2015) Molecular data suggest the ciliate Mesodinium (Protista:Ciliophora) might represent an undescribed taxon at class level. Zoological and Systematic, 40, 31–40.
  13. Chen, X., Pan, H.B., Huang, J., Warren, A., Al-Farraj, S.A. & Gao, S. (2016) New considerations on the phylogeny of cyrtophorian ciliates (Protozoa,Ciliophora): expanded sampling to understand their evolutionary relationships. Zoologica Scripta, 45, 334–348. https://doi.org/10.1111/zsc.12150
  14. Coleman, A.W. (2003) ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics, 19, 370–375. https://doi.org/10.1016/S0168-9525(03)00118-5
  15. Corliss, J.O. (1979) A salute to fifty-four great microscopists of the past: a pictorial footnote to the history of protozoology. Part II. Transactions of the American Microscopical Society, 98 (1), 26–58. https://doi.org/10.2307/3225939
  16. Da Silva, Z.R.J., Cedrola, F., Rossi, M.F., Costa, F.D.S. & Dias, R.J.P. (2022) Rumen ciliates (Alveolata, Ciliophora) associated with goats: checklist, geographic distribution, host specificity, phylogeny and molecular dating. Zootaxa, 5165 (2), 191–216. https://doi.org/10.11646/zootaxa.5165.2.3
  17. Da Silva, Z.R.J., Cedrola, F., Rossi, M.F. & Dias, R.J.P. (2023) Ciliates in domestic ruminants in Africa and the first characterization of ciliates (Alveolata, Ciliophora) in the rumen of domestic caprines of the Landim breed (Capra hircus L) from Mozambique. Symbiosis, 90 (3), 241–257. https://doi.org/10.1007/s13199-023-00932-w
  18. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModel-test 2: more models, new heuristic and parallel computing. Nature Methods, 9 (8), 772. https://doi.org/10.1038/nmeth.2109
  19. Dehority, B.A. (1984) Evaluation of subsampling and fixation procedures used for counting rumen Protozoa. Applied and Environmental Microbiology, 48, 182–185. https://doi.org/10.1128/aem.48.1.182-185.1984
  20. Dehority, B.A. (1986a) Protozoa of the digestive tract of herbivorous mammals. International Journal of Tropical Insect Science, 7, 279–296. https://doi.org/10.1017/S1742758400009346
  21. Dehority, B.A. (1986b) Rumen ciliate fauna of some Brazilian cattle: occurence of several ciliates new to the rumen including the cycloposthid Parentodinium africanum. Journal of Protozology, 33, 416–421. https://doi.org/10.1111/j.1550-7408.1986.tb05633.x
  22. Dogiel, V.A. (1927) Monographie der familie Ophryoscolecidae. Archiv für Protistenkunde, 59, 1–288.
  23. Fernandes, N.M., Da Silva Paiva, T., Da Silva-Neto, I.D., Schlegel, M. & Schrago, C.G. (2015) Expanded phylogenetic analyses of the class Heterotrichea (Ciliophora, Postciliodesmatophora) using five molecular markers and morphological data. Molecular Phylogenetics and Evolution, 95, 229–246. https://doi.org/10.1016/j.ympev.2015.10.030
  24. Gao, F., Huang, J., Zhao, Y., Li, L., Liu, W., Miao, M., Zhang, Q., Li, J., Yi, Z., El-Serehy, H.A., Warren, A. & Song, W. (2017) Systematic studies on ciliates (Alveolata, Ciliophora) in China: progress and achievements based on molecular information. European Journal of Protistology, 61, 409–423. https://doi.org/10.1016/j.ejop.2017.04.009
  25. Gentekaki, E., Kolisko, M., Boscaro, V., Bright, K.J., Dini, F., Digiuseppe, G., Gong, Y., Miceli, C., Modeo, L., Molestina, R.E., Petroni, G., Pucciarelli, S., Roger, A.J., Strom, S.L. & Lynn, D.H. (2014) Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate line ages. Molecular Phylogenetics and Evolution, 78, 36–42. https://doi.org/10.1016/j.ympev.2014.04.020
  26. Gong, Y., Xu, K., Zhan, Z., Yu, Y., Li, X., Villalobo, E. & Feng, W. (2010) Alpha-tubulin and small subunit rRNA phylogenies of peritrichs are congruent and do not support the clustering of mobilids and sessilids (Ciliophora, Oligohymenophorea). Journal of Eukaryotic Microbiology, 57, 265–272. https://doi.org/10.1111/j.1550-7408.2010.00472.x
  27. Gouy, M., Guindon, S. & Gascuel, O. (2009) Sea View version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27 (2), 221–224. https://doi.org/10.1093/molbev/msp259
  28. Goldman, W.E., Goldberg, G., Bowman, L.H., Steinmetz, D. & Schlessinger, D. (1983) Mouse rDNA: sequences and evolutionary analysis of spacer and mature RNA regions. Molecular and Cellular Biology, 3, 1488–1500. https://doi.org/10.1128/mcb.3.8.1488-1500.1983
  29. Grain, J. (1994) Infusoires ciliés (ordre des Entodiniomorphida). In: Grasse, P. (Ed.), Traité de Zoologie. Masson, Paris, pp. 327–364
  30. Göçmen, B. & Rastgeldi, S. (2004) A new rumen ciliate from Turkish domestic goat (Capra hircus L.): Entodinium salmani n. sp. (Entodiniidae, Entodiniomorphida). Turkish Journal of Zoology, 28, 295–299. [https://journals.tubitak.gov.tr/zoology/vol28/iss4/3]
  31. Göçmen, B. & Atatür, M.K. (2002) Some rumen ciliates (Isotrichidae, Trichostomatida; Epidininae, Ophryoscolecidae) of the domestic goat (Capra hircus L.) from Turkey. Turkish Journal of Zoology, 26, 15–26.
  32. Göçmen, B., Dehority, B.A. & Rastgeldi, S. (2002) The occurence of the rumen ciliate Metadinium banksi Dehority, 1985 (Ophryoscolecidae, Entodiniomorphida) from domestic goats (Capra hircus L.) in southeastern Turkey. Turkish Journal of Zoology, 26, 367–370.
  33. Göçmen, B., Falakali Mutaf, B. & Tosunoðlu, M. (2001a) New rumen ciliates from Turkish domestic cattle (Bos taurus L.): 3. Eudiplodinium dehorityi n. sp. Acta Parasitologica Turcica, 25, 305–307.
  34. Göçmen, B., Tosunoðlu, M. & Mutaf, B.F. (2001b) New rumen ciliates from Turkish domestic cattle (Bos taurus L.): 3. Entodinium oektemae n. sp. and Entodinium imaii n. sp. (Entodiniidae, Entodiniomorphida). Turkish Journal of Zoology, 25 (3), 269–274.
  35. Göçmen, B., Dehority, B.A., Talu, G.H. & Rastgeldi, S. (2001c) The Rumen Ciliate Fauna of Domestic Sheep (Ovis ammon aries) from the Turkish Republic of Northern Cyprus. Journal of Eukaryotic Microbiology, 48, 455–459. https://doi.org/10.1111/j.1550-7408.2001.tb00179.x
  36. Göçmen, B. (1999a) Ophryoscolex Stein, 1858 (Protozoa: Ciliophora: Entodiniomorphida) cinsi hakkinda morfolojik ve taksonomik arastirmalar. Doða - Turkish Journal of Zoology, 23, 397–427.
  37. Göçmen, B. (1999b) Epidinium Crawley, 1923 (Protozoa: Ciliophora: Entodiniomorphida) cinsi hakkinda morfolojik ve taksonomik arastirmalar. Doða - Turkish Journal of Zoology, 23, 429–463.
  38. Göçmen, B. (1999c) New rumen ciliates from Turkish domestic cattle (Bos taurus L): II. Epidinium graini n.sp. (Ophryoscolecidae, Entodiniomorphida). Turkish Journal of Zoology, 24, 23–31.
  39. Hsiung, T.S.A. (1932) A general survey of the protozoan fauna of the rumen of the Chinese cattle. Bulletin of the Fan Memorial Institute of Biology, 3, 87–107.
  40. Imai, S. (1981) Four new rumen ciliates, Entodinium ogimotoi sp. n., E. bubalum sp. n., E. fujitai sp. n. and E. tsunodai sp. n. and Oligoisotricha bubali (Dogiel, 1928) n. comb. Japanese Journal of Veterinary Science, 43, 201–209. https://doi.org/10.1292/jvms1939.43.201
  41. Imai, S. (1984) New rumen ciliates, Polymorphella bovis sp. n. and Entodinium longinucleatum forma spinolobum f. n., from the Zebu cattle in Thailand. Japanese Journal of Veterinary Science, 46, 391–395. https://doi.org/10.1292/jvms1939.46.391
  42. Imai, S. (1998) Phylogenetic taxonomy of rumen ciliate protozoa based on their morphology and distribution. Journal of Applied Animal Research, 13 (1–2), 17–36. https://doi.org/10.1080/09712119.1998.9706670
  43. Ito, A., Honma, H., Gürelli, G., Göçmen, B., Mishima, T., Nakai, Y. & Imai, S. (2010) Redescription of Triplumaria selenica (Ciliophora, Entodiniomorphida) and its phylogenetic position based on the infraciliary bands and 18SSU rRNA gene sequence. European Journal of Protistology, 46 (3), 180–188. https://doi.org/10.1016/j.ejop.2010.01.005
  44. Ito, A., Ishihara, M. & Imai, S. (2014) Bozasella gracilis n. sp. (Ciliophora, Entodiniomorphida) from Asian elephant and phylogenetic analysis of entodiniomorphids and vestibuliferids. European Journal of Protistology, 50, 134–152. https://doi.org/10.1016/j.ejop.2014.01.003
  45. Ito, A., Eckardt, W., Stoinski, T.S., Gillespie, T.R. & Tokiwa, T. (2016) Prototapirella ciliates from wild habituated Virunga mountain gorillas (Gorilla beringei beringei) in Rwanda with the descriptions of two new species. European Journal of Protistology, 54, 47–58. https://doi.org/10.1016/j.ejop.2016.04.001
  46. Katoh, K., Rozewicki, J. & Yamada, K.D. (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20 (4), 1160–1166. https://doi.org/10.1093/bib/bbx108
  47. Keller, A., Förster, F., Müller, T., Dandekar, T., Schultz, J. & Wolf, M. (2010) Including RNA secondary structures improves accuracy and robustness in reconstruction of phylogenetic trees. Biology Direct, 5, 1–12. https://doi.org/10.1186/1745-6150-5-4
  48. Kittelmann, S., Devente, S.R., Kirk, M.R., Seedorf, H., Dehority, B.A. & Janssen, P.H. (2015) Phylogeny of intestinal ciliates, including Charonina ventriculi, and comparison of microscopy and 18S rRNA gene pyrosequencing for rumen ciliate community structure analysis. Applied and Environmental Microbiology, 81 (7), 2433–2444. https://doi.org/10.1128/AEM.03697-14
  49. Kofoid, C.A. & Maclennan, R.F. (1933) Ciliates from Bos indicus Linn III. Epidinium crawley, Epiplastron gen. nov., and Ophryoscolex Stein. University of California Publications in Zoology, 39, 1–34.
  50. Kofoid, C.A. & Maclennan, R.F. (1932) Ciliates from Bos indicus Linn II. The genus Diplodinium Schuberg. University of California Publications in Zoology, 37, 53–152.
  51. Kofoid, C.A. & Maclennan, R.F. (1930) Ciliates from Bos Indicus Linn. I. the genus Entodinium Stein. University of California (Berkeley) Publications of Zoology, 33, 471–544.
  52. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology Evolution, 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  53. Li, Z., Wang, X., Zhang, Y., Yu, Z., Zhang, T., Dai, X., Pan, X., Jing, R., Yan, Y., Liu, Y., Gao, S., Li, F., Huang, Y., Tian, J., Yao, J., Xing, X.P., Shi, T., Ning, J., Yao, B., Huang, H & Jiang, Y. (2022) Genomic insights into the phylogeny and biomass-degrading enzymes of rumen ciliates. The ISME Journal, 16 (12), 2775–2787. https://doi.org/10.1038/s41396-022-01306-8
  54. Lynn, D.H. (2008) The ciliated protozoa. Characterization. classification. and guide to the literature. Springer, Dordrecht, 605 pp.
  55. Ogimoto, K. & Imai, S. (1981) Atlas of Rumen Microbiology. Japan Scientific Societies, Tokyo, 231 pp.
  56. Pecina, L. & Vďačný, P. (2022) DNA barcoding and coalescent-based delimitation of endosymbiotic clevelandellid ciliates (Ciliophora: Clevelandellida): a shift to molecular taxonomy in the inventory of ciliate diversity in panesthiine cockroaches. Zoological Journal of the Linnean Society, 194 (4), 1072–1102. https://doi.org/10.1093/zoolinnean/zlab063
  57. Pomahač, O., Méndez-Sánchez, D., Poláková, K., Müller, M., Solito, M.M., Bourland, W.A. & Čepička, I. (2023) Rediscovery of remarkably rare anaerobic tentaculiferous ciliate genera Legendrea and Dactylochlamys (Ciliophora: Litostomatea). Biology, 12 (5), 707. https://doi.org/10.3390/biology12050707
  58. Ponce-Gordo, F., Jimenez-Ruiz, E. & Martínez-Díaz, R.A. (2008) Tentative identification of the species of Balantidium from ostriches (Struthio camelus) as Balantidium coli-like by analysis of polymorphic DNA. Veterinary Parasitology, 157 (1–2), 41–49. https://doi.org/10.1016/j.vetpar.2008.06.024
  59. Ponce-Gordo, F., Fonseca-Salamanca, F. & Martínez-Díaz, R.A. (2011) Genetic heterogeneity in internal transcribed spacer genes of Balantidium coli (Litostomatea, Ciliophora). Protist, 162, 774–794. https://doi.org/10.1016/j.protis.2011.06.008
  60. Rastgeldi, S., Göçmen, B. & Özbel, Y. (2003) Turkiye evcil keçilerinde (Capra hircus L.) iskembe siliyatlari, Diplodinium crista-galli and Diplodinium flabellum un (Entodiniomorphida) bulunusu. Acta Parasitologica Turcica, 27, 331–336.
  61. Rastgeldi, S. & Göçmen, B. (2003) Turkiye’de daðilis gösteren evcil keçilerin (Capra hircus L.) iskembesinde yasayan Polyplastron multivesiculatum (Ciliophora: Protista) hakkinda. Acta Parasitologica Turcica, 27, 71–74.
  62. Rajter, Ľ & Vďačný, P. (2016) Rapid radiation, gradual extinction and parallel evolution challenge generic classification of spathidiid ciliates (Protista, Ciliophora). Zoologica Scripta, 45, 200–223. https://doi.org/10.1111/zsc.12143
  63. Rossi, M.F., Dias, R.J.P., Senra, M.V.X., Martinele, I., Carlos, A.G., Soares, C.A.G. & D’Agosto, M. (2015) Molecular Phylogeny of the Family Ophryoscolecidae (Ciliophora, Litostomatea) Inferred from 18S rDNA sequences. Journal of Eukaryotic Microbiology, 62, 584–590. https://doi.org/10.1111/jeu.12211
  64. Rossi, M.F. (2017) Evolução da biologia ruminal: diversificação de mamíferos herbívoros ruminantes, protistas ciliados simbiontes e arcabouço enzimático. Thesis, Universidade Federal do Rio de Janeiro, Instituto de Biologia, Centro de Ciências da Saúde, Rio de Janeiro, 152 pp.
  65. Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
  66. Santoferrara, L.F., Tian, M., Alder, V.A. & Mcmanus, G.B. (2015) Discrimination of closely related species in tintinnid ciliates: New insights on crypticity and polymorphism in the genus Helicostomella. Protist, 166, 78–92. https://doi.org/10.1016/j.protis.2014.11.005
  67. Schultz, J. & Wolf, M. (2009) ITS2 sequence-structure analysis in phylogenetics: A how-to manual for molecular systematics. Molecular Phylogenetics and Evolution, 52, 520–523. https://doi.org/10.1016/j.ympev.2009.01.008
  68. Shazib, S.U.A., Vďačný, P., Kim, J.H., Jang, S.W. & Shin, M.K. (2016) Molecular phylogeny and species delimitation within the ciliate genus Spirostomum (Ciliophora, Postciliodesmatophora, Heterotrichea), using the internal transcribed spacer region. Molecular Phylogenetics and Evolution, 102, 128–144. https://doi.org/10.1016/j.ympev.2016.05.041
  69. Small, E.B. & Lynn, D. (1985) Phylum Ciliophora Doflein, 1901. In: Illustrated Guide to the Protozoa. Society of Protozoologists, Kansas, pp. 393–575.
  70. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  71. Strüder-Kypke, M.C., Kornilova, O.A. & Lynn, D.H. (2007) Phylogeny of trichostome ciliates (Ciliophora, Litostomatea) endosymbiotic in the Yakut horse (Equus caballus). European Journal of Protistology, 43 (4), 319–328. https://doi.org/10.1016/j.ejop.2007.06.005
  72. Sun, P., Clamp, J.C. & Xu, D. (2010) Analysis of the secondary structure of ITS transcripts in peritrich ciliates (Ciliophora, Oligohymenophorea): Implications for structural evolution and phylogenetic reconstruction. Molecular Phylogenetics and Evolution, 56, 242–251. https://doi.org/10.1016/j.ympev.2010.02.030
  73. Trifinopoulos, J., Nguyen, L.T., Von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44 (W1), W232–W235. https://doi.org/10.1093/nar/gkw256
  74. Tokiwa, T., Modrý, D., Ito, A., Pomajbíková, K., Petrželková, K.J. & Imai, S. (2010) A new entodiniomorphid ciliate, Troglocorys cava n.g., n. sp., from the wild eastern chimpanzee (Pan troglodytes schweinfurthii) from Uganda. Journal of Eukaryotic Microbiology, 57 (2), 115–120. https://doi.org/10.1111/j.1550-7408.2009.00456.x
  75. Van Hoek, A.H., Van Alen, T.A., Sprakel, V.S., Hackstein, J.H. & Vogels, G.D. (1998) Evolution of anaerobic ciliates from the gastrointestinal tract: phylogenetic analysis of the ribosomal repeat from Nyctotherus ovalis and its relatives. Molecular Biology and Evolution, 15 (9), 1195–1206. https://doi.org/10.1093/oxfordjournals.molbev.a026027
  76. Vallo, P., Petrželková, K.J., Profousová, I., Petrášová, J., Pomajbíková, K., Leendertz, F., Hashimoto, C., Simmons, N., Babweteera, F., Machanda, Z., Piel, A., Robbins, M.M., Boesch, C., Sanz, C., Morgan, D., Sommer, V., Furuichi, T., Fujita, S., Matsuzawa, T., Kaur, T., Huffman, M.A. & Modrý, D. (2012) Molecular diversity of entodiniomorphid ciliate Troglodytella abrassarti and its coevolution with chimpanzees. American Journal of Physical Anthropology, 148 (4), 525–533. https://doi.org/10.1002/ajpa.22067
  77. Vďačný, P., Orsi, W., Bourland, W.A., Shimano, S., Epstein, S.S. & Foissner, W. (2011a) Morphological and molecular phylogeny of dileptid and tracheliid ciliates: Resolution at the base of the class Litostomatea (Ciliophora, Rhynchostomatia). European Journal of Protistology, 47 (4), 295–313. https://doi.org/10.1016/j.ejop.2011.04.006
  78. Vďačný, P., Bourland, W.A., Orsi, W., Epstein, S.S. & Foissner, W. (2011b) Phylogeny and classification of the Litostomatea (Protista, Ciliophora), with emphasis on free-living taxa and the 18S rRNA gene. Molecular Phylogenetics and Evolution, 59 (2), 510–522. https://doi.org/10.1016/j.ympev.2011.02.016
  79. Vďačný, P. (2015) Estimation of divergence times in litostomatean ciliates (Ciliophora: Intramacronucleata), using Bayesian relaxed clock and 18S rRNA gene. European Journal of Protistology, 51 (4), 321–334. https://doi.org/10.1016/j.ejop.2015.06.008
  80. Vďačný, P., Bourland, W.A., Orsi, W., Epstein, S.S. & Foissner, W. (2012) Genealogical analyses of multiple loci of litostomatean ciliates (Protista, Ciliophora, Litostomatea). Molecular Phylogenetics and Evolution, 65, 397–411. https://doi.org/10.1016/j.ympev.2012.06.024
  81. Vďačný, P. & Rajter, L. (2015) Reconciling morphological and molecular classification of predatory ciliates: Evolutionary taxonomy of dileptids (Ciliophora, Litostomatea, Rhynchostomatia). Molecular Phylogenetics and Evolution, 90, 112–128. https://doi.org/10.1016/j.ympev.2015.04.023
  82. Wang, P., Gao, F., Huang, J., Strüder-Kypke, M. & Yi, Z. (2015) A case study to estimate the applicability of secondary structures of SSU-rRNA gene in taxonomy and phylogenetic analyses of ciliates. Zoologica Scripta, 44, 574–585. https://doi.org/10.1111/zsc.12122
  83. Weisse, T., Strüder-Kypke, M.C., Berger, H. & Foissner, W. (2008) Genetic, morphological, and ecological diversity of spatially separated clones of Meseres corlissi Petz & Foissner, 1992 (Ciliophora, Spirotrichea). Journal of Eukaryotic Microbiology, 55, 257–270. https://doi.org/10.1111/j.1550-7408.2008.00330.x
  84. Wright, A-D.G., Dehority, B.A. & Lynn, D.H. (1997) Phylogeny of the rumen ciliates Entodinium, Epidinium and Polyplastron (Litostomatea: Entodiniomorphida) inferred from small subunit ribosomal RNA sequences. Journal of Eukaryotic Microbiology, 44 (1), 61–67. https://doi.org/10.1111/j.1550-7408.1997.tb05693.x
  85. Wright, A-D.G. & Lynn, D.H. (1997a) Monophyly of the trichostome ciliates (Phylum Ciliophora: class Litostomatea) tested using new 18S rRNA sequences from the vestibuliferids, Isotricha intestinalis and Dasytricha ruminantium, and the haptorian, Didinium nasutum. European Journal of Protistology, 33, 305–315. https://doi.org/10.1016/S0932-4739(97)80008-9
  86. Wright, A-D.G. & Lynn, D.H. (1997b) Phylogenetic analysis of the rumen ciliate family Ophryoscolecidae based on 18S ribosomal RNA sequences, with new sequences from Diplodinium, Eudiplodinium, and Ophryoscolex. Canadian Journal of Zoology, 75, 963–970. https://doi.org/10.1139/z97-117
  87. Wright, A-D.G. (1998) Molecular phylogeny of the endosymbiotic ciliates, Litostomatea: Trichostomatia, of vertebrate animals inferred from 18S rRNA gene sequences (Doctoral dissertation, University of Guelph)
  88. Wolf, M. (2015) ITS so much more. Trends in Genetics, 31, 175–176. https://doi.org/10.1016/j.tig.2015.02.005
  89. Wright, A-D.J. (2015) Rumen Protozoa. In: Puniya, A.K., Singh, R. & Kamra, D.N. (Eds.), Rumen Microbiology, From Evolution to Revolution. Springer, New Delhi, pp. 113–120. https://doi.org/10.1007/978-81-322-2401-3_8
  90. Williams, A.G. & Coleman, G.S. (1992) The Rumen Protozoa. Springer, New York, New York, 442 pp. https://doi.org/10.1007/978-1-4612-2776-2
  91. Wiemers, M., Keller, A. & Wolf, M. (2009) ITS2 secondary structure improves phylogeny estimation in a radiation of blue butterflies of the subgenus Agrodiaetus (Lepidoptera: Lycaenidae: Polyommatus). BMC Evolutionary Biology, 9, 300. https://doi.org/10.1186/1471-2148-9-300
  92. Yi, Z. & Song, W. (2011) Evolution of the order Urostylida (Protozoa, Ciliophora): new hypotheses based on multi-gene information and identification of localized incongruence. PLoS ONE, 6, e17471. https://doi.org/10.1371/journal.pone.0017471
  93. Yi, Z., Chen, Z., Warren, A., Roberts, D., Al-Rasheid, K.A.S., Miao, M., Gao, S., Shao, C. & Song, W. (2008) Molecular phylogeny of Pseudokeronopsis (Protozoa, Ciliophora, Urostylida), with reconsideration of three closely related species at inter- and intra-specific levels inferred from the small subunit ribosomal RNA gene and the ITS1-5.8S-ITS2 region sequences. Journal of Zoology, 275, 268–275. https://doi.org/10.1111/j.1469-7998.2008.00438.x
  94. Young, I. & Coleman, A.W. (2004) The advantages of the ITS2 region of the nuclear rDNA cistron for analysis of phylogenetic relationships of insects: A Drosophila example. Molecular Phylogenetics and Evolution, 30, 236–242. https://doi.org/10.1016/S1055-7903(03)00178-7
  95. Zhang, Q., Yi, Z., Fan, X., Warren, A., Gong, J. & Song, W.B. (2014) Further insights into the phylogeny of two ciliate classes Nassophorea and Prostomatea (Protista,Ciliophora). Molecular Phylogenetics and Evolution, 70, 162–170. https://doi.org/10.1016/j.ympev.2013.09.015

How to Cite

Silva, Z.R.J.D., Cedrola, F., Senra, M.V.X., Rossi, M.F. & Dias, R.J.P. (2025) The ITS-rDNA region as a complementary or alternative phylogenetic marker to 18S-rDNA in rumen ciliates (Alveolata, Ciliophora). Zootaxa, 5716 (3), 409–420. https://doi.org/10.11646/zootaxa.5716.3.7