Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-11-13
Page range: 423-439
Abstract views: 85
PDF downloaded: 5

Ephippia of Daphnia O.F. Müller (Crustacea: Branchiopoda) from the Late Eocene of Central Tibetan Plateau

A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Leninsky Prospect 33; Moscow 119071; Russia.
State Key Laboratory of Biocontrol; School of Ecology; Sun Yat-sen University; Shenzhen 518000; China.
A.N. Severtsov Institute of Ecology and Evolution; Russian Academy of Sciences; Leninsky Prospect 33; Moscow 119071; Russia.
Crustacea Daphnia Late Eocene Tibetan Plateau

Abstract

On a planetary scale, the Eocene is interesting for climate changes, extensive orogeny and transformation of terrestrial and aquatic communities. Mass extinction of many organisms took place in the late Eocene to the early Oligocene, but not all groups have been studied in detail. The most complete data on taxonomy, diversity, distribution, and ecology were obtained on the Eocene angiosperms, vertebrates, insects, marine molluscs and large-bodied crustaceans. At the same time, Eocene microcrustaceans from inland waters are significantly less studied. Here we present the first data on the Cladocera from the greyish-white layered mudstones of the Late Eocene in Xiede village (Shuanghu County, central Tibetan Plateau), China. In total 29 ephippia were investigated and all of them belong to the genus Daphnia O.F. Müller, 1785 (Cladocera: Daphniidae). Twenty seven ephippia belong to Daphnia sp. 1 morphotype, the most common in the investigated samples. They belong to the subgenus Daphnia (Daphnia). These ephippia are covered by hollows with meshy ornamentation similar to those of some recent species and having two eggs with axes almost perpendicular to the dorsal margin. Two other morphotypes include a sole specimen each with ephippia covered by hillocks. Daphnia sp. 2 possesses a unique orientation of locules, unknown in any recent species and presumably belongs to an extinct taxon, may be even of subgenus level. Daphnia sp. 3 belongs to the subgenus D. (Ctenodaphnia) Dybowski & Grochowski, 1895 according to the ephippium size and locule orientation. In Eocene sediments of the eastern Nima Basin, the ephippia of Daphnia coexist with remains of thermophilic plants, insects and fishes. The occurrence of these ephippia supplements data on the diversity of thermophilic freshwater organisms in the geological past of the Tibetan Plateau. Moreover, the record of D. (Ctenodaphnia) in the sediment suggests a shallow, eutrophic, well warmed water body, possibly without a stable population of planktivorous fish in the late Eocene in central Tibet and confirm a warm climate with a low elevation at that time. Further studies can reveal more Daphniidae with unique morphology and help to prepare reliable descriptions for taxa new to science.

 

References

  1. Archibald, S.B. & Mathewes, R.W. (2000) Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology, 78 (8), 1441–1462. https://doi.org/10.1139/z00-070
  2. Archibald, S.B., Bossert, W.H., Greenwood, D.R. & Farrell, B.D. (2010) Seasonality, the latitudinal gradient of diversity, and Eocene insects. Paleobiology, 36 (3), 374–398. https://doi.org/10.1666/09021.1
  3. Ayress, M.A. (1993) Middle Eocene Ostracoda (Crustacea) from the coastal section, Bortonian Stage, at Hampden, South Island, New Zealand. New Zealand Natural Sciences, 20, 15–21.
  4. Ayress, M.A. (1995) Late Eocene Ostracoda (Crustacea) from the Waihao District, South Canterbury, New Zealand. Journal of Paleontology, 69 (5), 897–921. https://doi.org/10.1017/S0022336000035563
  5. Benzie, J.A.H. (2005) The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). Guides to the identification of the microinvertebrates of the continental waters of the world. Vol. 21. Kenobi Productions, Ghent & Backhuys Publishers, Leiden, 376 pp.
  6. Bergue, C.T., Kotov, A.A. & Maranhao, M.S.A.S. (2015) Ephippia of Cladocera (Crustacea: Branchiopoda) from the Oligocene Tremembé palaeolake, Brazil. Journal of Natural History, 49 (37–38), 2265–2273. https://doi.org/10.1080/00222933.2015.1022237
  7. Błędzki, L.A. & Rybak, J.I. (2016) Freshwater Crustacean Zooplankton of Europe. Cladocera & Copepoda (Calanoida, Cyclopoida). Key to species identification, with notes on ecology, distribution, methods and introduction to data analysis. Springer International Publishing, Cham, 918 pp. https://doi.org/10.1007/978-3-319-29871-9
  8. Cai, C., Huang, D., Wu, F., Zhao, M. & Wang, N. (2019) Tertiary water striders (Hemiptera, Gerromorpha, Gerridae) from the central Tibetan Plateau and their palaeobiogeographic implications. Journal of Asian Earth Sciences, 175, 121–127. https://doi.org/10.1016/j.jseaes.2017.12.014
  9. Chen, P.J. & Shen Y.-B. (1981) Paleogene conchostracan faunas of China. Geological Society of America Special Paper, 187, 193–198. https://doi.org/10.1130/SPE187-p193
  10. Costa, E., Garcés, M., Sáez, A., Cabrera, L. & López-Blanco, M. (2011) The age of the “Grande Coupure” mammal turnover: New constraints from the Eocene–Oligocene record of the Eastern Ebro Basin (NE Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 301 (1–4), 97–107. https://doi.org/10.1016/j.palaeo.2011.01.005
  11. De Mazancourt, V., Wappler, T. & Wedmann, S. (2022) Exceptional preservation of internal organs in a new fossil species of freshwater shrimp (Caridea: Palaemonoidea) from the Eocene of Messel (Germany). Scientific Reports, 12 (1), 18114. https://doi.org/10.1038/s41598-022-23125-9
  12. Dickinson, K.A. & Swain, F.M. (1967) Late Cenozoic freshwater Ostracoda and Cladocera from northeastern Nevada. Journal of Paleontology, 335–350.
  13. Dlussky, G.M. & Rasnitsyn, A.P. (2009) Ants (Insecta: Vespida: Formicidae) in the Upper Eocene Amber of Central and Eastern Europe. Paleontological Journal, 43 (9), 1024–1042. https://doi.org/10.1134/S0031030109090056
  14. Dumont, H.J., Pociecha, A., Zawisza, E., Szeroczyńska, K., Worobiec, E. & Worobiec, G. (2020) Miocene cladocera from Poland. Scientific Reports, 10 (1), 12107. https://doi.org/10.1038/s41598-020-69024-9
  15. Elewa, A.M. (2002) Paleobiogeography of Maastrichtian to early Eocene ostracoda of North and West Africa and the Middle East. Micropaleontology, 48 (4), 391–398. https://doi.org/10.2113/48.4.391
  16. Fang, X.M., Dupont-Nivet, G., Wang, C.S., Song, C.H., Meng, Q.Q., Zhang, W.L., Nie, J.S., Zhang, T., Mao, Z.Q. & Chen, Y. (2020) Revised chronology of central Tibet uplift (Lunpola Basin). Science Advances, 6, eaba7298. https://doi.org/10.1126/sciadv.aba7298
  17. Feldmann, R.M., Bice, K.L., Hopkins, C.S., Salva, E.W. & Pickford, K. (1998) Decapod crustaceans from the Eocene castle hayne formation, North Carolina: paleoceanographic implications. Journal of Paleontology, 72 (48), 1–28. https://doi.org/10.1017/S0022336000059916
  18. Ferratges, F.A., Domínguez, J.L., Ossó, À. & Zamora, S. (2023) Spider crabs (Decapoda: Brachyura: Majoidea) from the upper Eocene of south Pyrenees (Huesca, Spain). Palaeontologia Electronica, 26 (2), a27. https://doi.org/10.26879/1270
  19. Gallego, O.F., Shen, Y.B., Jarzembowski, E., Ian, J., Angela, S.E.L.F. & Monferran, M.D. (2019) The Crustacea of the Insect Bed (latest Eocene) of the Isle of Wight, England, including the first spinicaudatan (clam shrimp) from the British Cenozoic. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 110 (3–4), 289–299. https://doi.org/10.1017/S1755691018000452
  20. Greenwalt, D.E., Rose, T.R., Siljestrom, S.M., Goreva, Y.S., Constenius, K.N. & Wingerath, J.G. (2014) Taphonomy of the fossil insects of the middle Eocene Kishenehn Formation. Acta Palaeontologica Polonica, 60 (4), 931–947. https://doi.org/10.4202/app.00071.2014
  21. Gustafson, E. (2023) The Early Eocene Decapod Crustacean Fauna of the Lookingglass Formation, Oregon. Bulletin of the Museum of Natural History, University of Oregon, 31, 1–45.
  22. Hansen, T.A. (1987) Extinction of late Eocene to Oligocene molluscs: relationship to shelf area, temperature changes, and impact events. Palaios, 69–75. https://doi.org/10.2307/3514573
  23. Hansen, T.A., Kelley, P.H. & Haasl, D.M. (2004) Paleoecological patterns in molluscan extinctions and recoveries: comparison of the Cretaceous–Paleogene and Eocene–Oligocene extinctions in North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 214 (3), 233–242. https://doi.org/10.1016/j.palaeo.2004.06.017
  24. Huang, D., Lian, X., Fu, Y. & Nel, A. (2023) The first Chinese representative of the Cenozoic hawker dragonfly Oligaeschna (Odonata: Aeshnidae) from the Eocene of North Tibet. Historical Biology, 35 (6), 997–1001. https://doi.org/10.1080/08912963.2022.2071713
  25. Hudec, I. (2010) Anomopoda, Ctenopoda, Haplopoda, Onychopoda (Crustacea: Branchiopoda). Fauna Slovenska III. VEDA, Bratislava, 496 pp.
  26. Hutchinson, D.K., Coxall, H.K., Lunt, D.J., Steinthorsdottir, M., De Boer, A.M., Baatsen, M... & Zhang, Z. (2021) The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past, 17 (1), 269–315. https://doi.org/10.5194/cp-17-269-2021
  27. Jia, L.B., Su, T., Huang, Y.J., Wu, F.X., Deng, T. & Zhou, Z.K. (2019) First fossil record of Cedrelospermum (Ulmaceae) from the Qinghai–Tibetan Plateau: Implications for morphological evolution and biogeography. Journal of Systematics and Evolution, 57 (2), 94–104. https://doi.org/10.1111/jse.12435
  28. Jiang, H., Su, T., Wong, W.O., Wu, F., Huang, J. & Shi, G. (2019) Oligocene Koelreuteria (Sapindaceae) from the Lunpola Basin in central Tibet and its implication for early diversification of the genus. Journal of Asian Earth Sciences, 175, 99–108. https://doi.org/10.1016/j.jseaes.2018.01.014
  29. Jonna, R. & Lehmann, J.T. (2002) Invasion of Lake Victoria by the large bodied herbivorous Cladoceran Daphnia magna. In: Odada, E.O. & Olago, D.O. (Eds.), The East African Great Lakes: Limnology, Paleolimnolgy and Biodiversity. Kluwer Academic Publishers, Dordrecht, pp. 135–145. https://doi.org/10.1007/0-306-48201-0_12
  30. Keyser, D. & Weitschat, W. (2005) First record of ostracods (Crustacea) in Baltic amber. Hydrobiologia, 538, 107–114. https://doi.org/10.1007/s10750-004-5941-5
  31. Keyser, D. & Friedrich, F. (2017) An exceptionally well preserved new species of ostracod (Crustacea) with soft parts in Baltic amber. Historical Biology, 29 (1), 53–62. https://doi.org/10.1080/08912963.2015.1123554
  32. Kirillova, I.V., Van der Plicht, J., Gubin, S.V., Zanina, O.G., Chernova, O.F., Lapteva, E.G., Trofimova, S.S., Zinovyev, E.V., Zharov, A.A., Fadeeva, E.O., Van Kolfschoten, T., Shidlovskiy, F.K. & Kotov, A.A. (2016) Taphonomic phenomenon of ancient hair from Glacial Beringia: perspectives for palaeoecological reconstructions. Boreas, 45 (3), 455–469. https://doi.org/10.1111/bor.12162
  33. Korovchinsky, N.M., Kotov, A.A., Sinev, A.Y., Neretina, A.N. & Garibian, P.G. (2021) Water fleas (Crustacea: Cladocera) of North Eurasia Vol. 2. KMK, Moscow, 544 pp. [in Russian with English abstract]
  34. Kotov, A.A. (2013) Morphology and phylogeny of Anomopoda (Crustacea: Cladocera). KMK, Moscow, 638 pp. [in Russian with English abstract]
  35. Kotov, A.A. & Taylor, D.J. (2011) Mesozoic fossils (> 145 Mya) suggest the antiquity of the subgenera of Daphnia and their coevolution with chaoborid predators. BMC Evolutionary Biology, 11, 1–9. https://doi.org/10.1186/1471-2148-11-129
  36. Kotov, A.A., Kuzmina, S.A., Frolova, L.A., Zharov, A.A., Neretina, A.N. & Smirnov, N.N. (2019) Ephippia of the Daphniidae (Branchiopoda: Cladocera) in Late Caenozoic deposits: untapped source of information for palaeoenvironment reconstructions in the Northern Holarctic. Invertebrate Zoology, 16 (2), 183–199. https://doi.org/10.15298/invertzool.16.2.06
  37. Kotov, A.A., Neretina, A.N., Zharov, A.A., Izymova, E.I., Boeskorov, G.G., Kosintsev, P.A. & Shidlovskiy, F.K. (2020) A new glance at old samples: remains of freshwater invertebrates associated with mummified carcasses of large quaternary mammals. Biology Bulletin, 47, 753–761. https://doi.org/10.1134/S1062359020070080
  38. Kotov, A.A. & Wappler, T. (2015) Findings of Daphnia (Ctenodaphnia) Dybowski et Grochowski (Branchiopoda: Cladocera) in Cenozoic volcanogenic lakes in Germany, with discussion of their indicator value. Palaeontologia Electronica, 18.2.40A, 1–9. https://doi.org/10.26879/542
  39. Lai, X. & Li, Y. (1987) Ephippia of Cladocera from Tertiary of China. Acta Palaeontologica Sinica, 26 (2), 171–180. https://doi.org/10.7623/syxb198701004
  40. Liu, J., Su, T., Spicer, R.A., Tang, H., Deng, W.Y., Wu, F.X., Srivastava, G., Spicer, T., Do, T.V., Deng, T. & Zhou, Z.K. (2019) Biotic interchange through lowlands of Tibetan Plateau suture zones during Paleogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 524, 33–40. https://doi.org/10.1016/j.palaeo.2019.02.022
  41. Low, S.L., Su, T., Spicer, T.E., Wu, F.X., Deng, T., Xing, Y.W. & Zhou, Z.K. (2020) Oligocene Limnobiophyllum (Araceae) from the central Tibetan Plateau and its evolutionary and palaeoenvironmental implications. Journal of Systematic Palaeontology, 18 (5), 415–431. https://doi.org/10.1080/14772019.2019.1611673
  42. Lutz, H. (1991) Autochthone aquatische Arthropoda aus dem Mittel-Eozän der Fundstätte Messel (Insecta: Heteroptera; Coleoptera; cf. Diptera-Nematocera; Crustacea: Cladocera). Courier Forschungsinstitut Senckenberg, 139, 119–125.
  43. Mergeay, J., Declerck, S., Verschuren, D. & De Meester, L. (2006) Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments. Freshwater Biology, 51 (3), 399–411. https://doi.org/10.1111/j.1365-2427.2005.01494.x
  44. Mityaeva, K.Y., Neretina, A.N., Garibian, P.G., Kotov, A.A. & Petrovskiy, A.B. (2024) Fauna and local associations of water fleas (Crustacea: Branchiopoda: Cladocera) in small water bodies of Moscow City. Arthropoda Selecta, 33 (4), 480–492. https://doi.org/10.15298/arthsel.33.4.05
  45. Montoliu-Elena, L., Elías-Gutiérrez, M. & Silva-Briano, M. (2019) Moina macrocopa (Straus, 1820): a species complex of a common Cladocera, highlighted by morphology and DNA barcodes. Limnetica, 38 (1), 253–277. https://doi.org/10.23818/limn.38.18
  46. Müller, P. & Collins, J.S.H. (1991) Late Eocene coral-associated decapods (Crustacea) from Hungary. Mededelingen van de Werkgroepvoor Tertiaireen Kwartaire Geologie, 28 (2/3), 47–92.
  47. Neretina, A.N., Gololobova, M.A., Neplyukhina, A.A., Zharov, A.A., Rogers, C.D., Horne, D.J. & Kotov, A.A. (2020) Crustacean remains from the Yuka mammoth raise questions about non-analogue freshwater communities in the Beringian region during the Pleistocene. Scientific Reports, 10 (1), 859. https://doi.org/10.1038/s41598-020-57604-8
  48. Neretina, A.N., Alonso, M. & Kotov, A.A. (2024) Investigation of the distribution patterns in moinids (Crustacea: Cladocera: Moinidae) forming ephippia with two resting eggs. Zootaxa, 5512 (4), 451–490. https://doi.org/10.11646/zootaxa.5512.4.1
  49. Nyborg, T. & Garassino, A. (2017) A new genus of slipper lobster (Crustacea: Decapoda: Scyllaridae) from the Eocene of California and Oregon (USA). Neues Jahrbuch für Geologie und Paläontologie (Abhandlungen), 283 (3), 309–316. https://doi.org/10.1127/njgpa/2017/0644
  50. Nyborg, T.G., Garassino, A., De Angeli, A. & Ross, R.L. (2015) A new squat lobster (Crustacea, Anomura, Munidopsidae) from the middle-late Eocene of British Columbia (Canada). Neues Jahrbuch für Geologie und Paläontologie (Abhandlungen), 275 (3), 357–361. https://doi.org/10.1127/njgpa/2015/0470
  51. Pollard, H.G., Colbourne, J.K. & Keller, W. (2003) Reconstruction of Centuries-old Daphnia Communities in a Lake Recovering from Acidification and Metal Contamination. Ambio, 32 (3), 214–218. https://doi.org/10.1579/0044-7447(2003)032[0214:ROCDCI]2.0.CO;2
  52. Prothero, D.R. (1994) The late eocene-oligocene extinctions. Annual Review of Earth and Planetary Sciences, 22, 145–165. https://doi.org/10.1146/annurev.ea.22.050194.001045
  53. Prothero, D.R. & Berggren, W.A. (Eds.) (2014) Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, 584 pp.
  54. Richter, G. & Baszio, S. (2001) First proof of planctivory/insectivory in a fossil fish: Thaumaturus intermedius from the Eocene Lake Messel (FRG). Palaeogeography, Palaeoclimatology, Palaeoecology, 173 (1–2), 75–85. https://doi.org/10.1016/S0031-0182(01)00318-2
  55. Richter, G. & Wedmann, S. (2005) Ecology of the Eocene Lake Messel revealed by analysis of small fish coprolites and sediments from a drilling core. Palaeogeography, Palaeoclimatology, Palaeoecology, 223 (1–2), 147–161. https://doi.org/10.1016/j.palaeo.2005.04.002
  56. Richter, G., Baszio, S. & Wuttke, M. (2017) Discontinuities in the microfossil record of middle Eocene Lake Messel: clues for ecological changes in lake’s history? Palaeobiodiversity and Palaeoenvironments, 97, 295–314. https://doi.org/10.1007/s12549-016-0254-z
  57. Şafak, Ü., Ocakoǧlu, F. & Açıkalın, S. (2015) Ostracoda assemblage and the environmental characteristics of the Eocene Succession of the Central Sakarya Region. Micropaleontology, 61, 49–68. https://doi.org/10.47894/mpal.61.1.05
  58. Samir, A., Moneer, E.S.M., El-Sheikh, I. & Bazeen, Y.S. (2025) Paleoenvironmental and paleobiogeographical significance of Paleocene–early Eocene ostracods in Wadi Tarfa, North Eastern Desert, Egypt. Scientific Reports, 15 (1), 6828. https://doi.org/10.1038/s41598-025-89560-6
  59. Schweitzer, C.E., Feldmann, R.M. & Gingerich, P.D. (2004) New Decapoda (Crustacea) from the middle and late Eocene of Pakistan and a revision of Lobonotus A. Milne Edwards, 1864. Contributions from the Museum of Paleontology, the University of Michigan, 31, 89–118.
  60. Schweitzer, C.E., Feldmann, R.M., Gonzáles-Barba, G. & Vega, F.J. (2002) New crabs from the Eocene and Oligocene of Baja California Sur, Mexico and an assessment of the evolutionary and paleobiogeographic implications of Mexican fossil decapods. Journal of Paleontology, 76 (59), 1–43. https://doi.org/10.1666/0022-3360(2002)76[1:NCFTEA]2.0.CO;2
  61. Schweitzer, C.E., Feldmann, R.M., Ćosović, V., Ross, R.L. & Waugh, D.A. (2009) New Cretaceous and Eocene Decapoda (Astacidea, Thalassinidea, Brachyura) from British Columbia, Canada. Annals of Carnegie Museum, 77 (4), 403–423. https://doi.org/10.2992/0097-4463-77.4.403
  62. Schweitzer, C.E., Feldmann, R.M., Casadío, S. & Raising, M.R. (2012) Eocene decapod crustacea (Thalassinidea and Brachyura) from Patagonia, Argentina. Annals of Carnegie Museum, 80 (3), 173–186. https://doi.org/10.2992/007.080.0301
  63. Sirianni, K.M. (2017) Differential wind dispersal of cladoceran ephippia in a rock pool metacommunity. Aquatic Ecology, 51, 203–218. https://doi.org/10.1007/s10452-016-9611-2
  64. Smirnov, N.N. (1976) Macrothricidae and Moinidae of the World fauna. Fauna SSSR, Novaya Seriya, Rakoobraznye, 1 (3), 1–237 [in Russian]
  65. Smirnov, N.N. (2017) Physiology of the Cladocera. 2nd Edition. Academic Press, London, 418 pp. https://doi.org/10.1016/B978-0-12-805194-8.00015-5
  66. Su, T., Farnsworth, A., Spicer, R.A., Huang, J., Wu, F.X., Liu, J., Li, S.F., Xing, Y.W., Huang, Y.J., Deng, W.Y.D., Tang, H., Xu, C.L., Zhao, F., Srivastava, G., Valdes, P.J., Deng, T. & Zhou, Z.K. (2019) No high Tibetan plateau until the Neogene. Science Advances, 5 (3), eaav2189. https://doi.org/10.1126/sciadv.aav2189
  67. Sun, J., Ni, X., Bi, S., Wu, W., Ye, J., Meng, J. & Windley, B.F. (2014) Synchronous turnover of flora, fauna and climate at the Eocene–Oligocene Boundary in Asia. Scientific Reports, 4 (1), 7463. https://doi.org/10.1038/srep07463
  68. Trusova, E.K. & Badamgarav, D. (1976) On the first record of Actacenozoic bivalve crustaceans (Conchostraca). In: Kramarenko N.N. (Ed.), Paleontology and Biostratigraphy of Mongolia. Joint USSR-Mongolian Paleontological Expedition, Moscow, pp. 162–168.
  69. Tumskaya, V.V., Neretina, A.N., Kienast, F., Protopopov, A.V., Boeskorov, G.G. & Kotov, A.A. (2024) An unexpected record of Moina Baird, 1850 (Crustacea: Cladocera) in Pleistocene deposits of North-Eastern Eurasia. Arthropoda Selecta, 33 (1), 25–35. https://doi.org/10.15298/arthsel.33.1.03
  70. Van Damme, K. & Kotov, A.A. (2016) The fossil record of the Cladocera (Crustacea: Branchiopoda): Evidence and hypotheses. Earth-Science Reviews, 163, 162–189. https://doi.org/10.1016/j.earscirev.2016.10.009
  71. Vega, F.J., Cosma, T., Coutiño, M.A., Feldmann, R.M., Nyborg, T.G., Schweitzer, C.E. & Waugh, D.A. (2001) New middle Eocene decapods (Crustacea) from Chiapas, México. Journal of Paleontology, 75 (5), 929–946. https://doi.org/10.1666/0022-3360(2001)075<0929:NMEDCF>2.0.CO;2
  72. Vega, F.J., Nyborg, T., Coutiño, M.A. & Hernández-Monzón, O. (2008) Review and additions to the Eocene decapod Crustacea from Chiapas, Mexico. Bulletin of the Mizunami Fossil Museum, 34, 51–71.
  73. Wang, N. & Wu, F. (2015) New Oligocene cyprinid in the central Tibetan Plateau documents the pre-uplift tropical lowlands. Ichthyological Research, 62, 274–285. https://doi.org/10.1007/s10228-014-0438-3
  74. Wappler, T., Grímsson, F., Wang, B., Nel, A., Ólafsson, E., Kotov, A.A., Davis, S.R. & Engel, M.S. (2014) Before the ‘Big Chill’: A preliminary overview of arthropods from the middle Miocene of Iceland (Insecta, Crustacea). Palaeogeography, Palaeoclimatology, Palaeoecology, 401, 1–12. https://doi.org/10.1016/j.palaeo.2014.03.006
  75. Woodward, H. (1879) On the occurrence of Branchipus (or Chirocephalus) in a fossil state, associated with Eosphaeroma and with numerous insect remains in the Eocene freshwater (Bembridge) limestone of Gurnet Bay, Isle of Wight. Geological Society of London, Quarterly Journal, 35, 342–350. https://doi.org/10.1144/GSL.JGS.1879.035.01-04.22
  76. Wu, F., Miao, D., Chang, M.M., Shi, G. & Wang, N. (2017) Fossil climbing perch and associated plant megafossils indicate a warm and wet central Tibet during the late Oligocene. Scientific Reports, 7 (1), 878. https://doi.org/10.1038/s41598-017-00928-9
  77. Xia, G., Zheng, D., Krieg-Jacquier, R., Fan, Q., Chen, Y. & Nel, A. (2021) The oldest-known Lestidae (Odonata) from the late Eocene of Tibet: palaeoclimatic implications. Geological Magazine, 159 (4), 511–518. https://doi.org/10.1017/S0016756821001102
  78. Xiong, Z., Liu, X., Ding, L., Farnsworth, A., Spicer, R.A., Xu, Q., Valdes, P., He, S., Zeng, D., Wang, C., Li, Z., Guo, X., Su, T., Zhao, C., Wang, H. & Yue, Y. (2022) The rise and demise of the Paleogene central Tibetan valley. Science Advances, 8 (6), eabj0944. https://doi.org/10.1126/sciadv.abj0944
  79. Xu, X.-T., Deng, W.Y.D., Zhou, Z.K., Wappler, T. & Su, T. (2021) The first Fulgoridae (Hemiptera: Fulgoromorpha) from the Eocene of the central Qinghai–Tibetan Plateau. Fossil Record, 24 (2), 263–274. https://doi.org/10.5194/fr-24-263-2021
  80. Xu, X.T., Szwedo, J., Huang, D.Y., Deng, W.Y.D., Obroślak, M., Wu, F.X. & Su, T. (2022) A new genus of spittlebugs (Hemiptera, Cercopidae) from the Eocene of central Tibetan Plateau. Insects, 13 (9), 770. https://doi.org/10.3390/insects13090770
  81. Xu, X.-T. (2024) Late Eocene Insect Diversity in Central Tibetan Plateau and its Paleoecological Implications. PhD thesis, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 158 pp. [in Chinese]
  82. Xu, X.-T., Waichert, C., Su, T. & Béthoux, O. (2025) Spider wasps (Hymenoptera: Pompilidae) from Xiede (Eocene, central Tibetan Plateau): systematics and paleoecological implications. Geodiversitas, 47 (6), 313–325. https://doi.org/10.5252/geodiversitas2025v47a6
  83. Yamaguchi, T., Suzuki, H., Soe, A.N., Htike, T., Nomura, R. & Takai, M. (2015) A new late Eocene Bicornucythere species (Ostracoda, Crustacea) from Myanmar, and its significance for the evolutionary history of the genus. Zootaxa, 3919 (2), 306–326. https://doi.org/10.11646/zootaxa.3919.2.4
  84. Yan-Bin, S., Gallego, O.F., Buchheim, H.P. & Biaggi, R.E. (2006) Eocene conchostracans from the Laney member of the green river formation, Wyoming, USA. Journal of Paleontology, 80 (3), 447–454. https://doi.org/10.1666/0022-3360(2006)80[447:ECFTLM]2.0.CO;2
  85. Yixin, S. (1995) Discovery of resting egg fossils of Cladocera in Anjihai River Formation, Kuitun river section, Jungar Basin and its geological significance. Acta Micropalaeontologica Sinica, 12, 63–66.
  86. Zhang, X., Gélin, U., Spicer, R.A., Wu, F., Farnsworth, A., Chen, P., Del Rio, C., Li, S., Liu, J., Huang, J., Spicer, T.E.V., Tomlinson, K.W., Valdes, P.J., Xu, X., Zhang, S., Deng, T., Zhou, Z. & Su, T. (2022) Rapid Eocene diversification of spiny plants in subtropical woodlands of central Tibet. Nature Communications, 13, 3787. https://doi.org/10.1038/s41467-022-31512-z
  87. Zharov, A.A., Neretina, A.N., Rogers, D.C., Reshetova, S.A., Sinitsa, S.M. & Kotov, A.A. (2020) Pleistocene Branchiopods (Cladocera, Anostraca) from Transbaikalian Siberia demonstrate morphological and ecological stasis. Water, 12 (11), 3063. https://doi.org/10.3390/w12113063

How to Cite

Neretina, A.N., Xu, X.T. & Kotov, A.A. (2025) Ephippia of Daphnia O.F. Müller (Crustacea: Branchiopoda) from the Late Eocene of Central Tibetan Plateau. Zootaxa, 5719 (3), 423–439. https://doi.org/10.11646/zootaxa.5719.3.9