Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-12-22
Page range: 1-33
Abstract views: 98
PDF downloaded: 5

Endemism and regionalization in the Andes: What do reptiles tell us?

Instituto de Bio y Geociencias del Noroeste Argentino - IBIGEO (CONICET-UNSa); Av. 9 de julio 14 - CP 4405 - Rosario de Lerma - Salta - República Argentina - +54 - 0387 – 4931755; Universidad Nacional de Salta. Facultad de Ciencias Naturales. Av. Bolivia 5150. CP 4400. Salta – República Argentina
Reptilia Neotropical Squamates Bioregions Mountain range

Abstract

This study aims to establish a biogeographic regionalization of the Andes in South America through a quantitative analysis focused on reptile distributions. I compiled georeferenced data for 455 species, encompassing 34,192 records, and used two different methodologies to delineate bioregions and areas of endemism. The results reveal 17 bioregions that largely correspond with previously proposed subdivisions, although novel biogeographic units influenced by scale effects may be recognized. Also, 17 areas of endemism were identified, many aligning with key biogeographic provinces such as Puna, Atacama, and Patagonia, emphasizing the importance of reptiles as biogeographic indicators. My comparisons with existing biodiversity hotspots show an overlap with these proposals. The bioregions and areas of endemism, however, are more finely defined than the hotspots. I also compared those areas with areas found by a global regionalization for reptiles. The findings support the utility of quantitative, multi-taxon approaches to biogeographic regionalization, highlighting the complex and mosaic nature of the Andes biota. The existence of some bioregions that aren’t fully congruent with previous proposals suggests the existence of biogeographic patterns that have not yet been recognized. This work underscores the necessity of incorporating reptiles into biodiversity assessments and conservation planning to better capture the region’s endemic diversity and inform targeted protection strategies.

 

References

  1. Aagesen, L., Szumik, C., Goloboff, P. & Tellería, M.C. (2013) A new area of endemism in South America: Results of cladistic and biogeographic analyses of Asteraceae. Taxon, 62 (1), 188–201.
  2. Aguilar-Kirigin, A.J., Aparicio, J., Langstroth, R., Valladares Faundez, P. & Abdala, C.S. (2021) Actualización taxonómica y avance en el conocimiento de Liolaemus Wiegmann 1834 (Iguania: Liolaemidae) en el Estado Plurinacional de Bolivia. Cuadernos de Herpetología, 35 (Suppment 1), 101–110.
  3. Amaral, A. do (1923) New genera and species of snakes. Proceedings of the New England Zoölogical Club, 8, 85–105. https://doi.org/10.5962/bhl.part.4002
  4. Andrade-Díaz, M.S., Hibbard, T.N. & Díaz-Gómez, J.M. (2017) Identifying endemism areas: an example using neotropical lizards. South American Journal of Herpetology, 12 (1), 61–75. https://doi.org/10.2994/SAJH-D-16-00038.1
  5. Anthelme, F., Jacobsen, D., Macek, P., Meneses, R.I., Moret, P., Beck, S. & Dangles, O. (2014) Biodiversity patterns and continental insularity in the tropical High Andes. Arctic, Antarctic, and Alpine Research, 46 (4), 811–828. https://doi.org/10.1657/1938-4246-46.4.811
  6. Antonelli, A., Nylander, J.A., Persson, C. & Sanmartín, I. (2009) Tracing the impact of the Andean uplift on Neotropical plant evolution. Proceedings of the National Academy of Sciences, 106 (24), 9749–9754. https://doi.org/10.1073/pnas.0811421106
  7. Arteaga, A., Pyron, R.A., Peñafiel, N., Romero-Barreto, P., Culebras, J., Bustamante, L., Yánez-Muñoz, M.H. & Guayasamin, J.M. (2016) Comparative Phylogeography Reveals Cryptic Diversity and Repeated Patterns of Cladogenesis for Amphibians and Reptiles in Northwestern Ecuador. Available from: http://ncbi.nlm.nih.gov (accessed 11 November 2025) https://doi.org/10.1371/journal.pone.0151746
  8. Barbour, T. (1914) A Contribution to the Zoögeography of the West Indies, with Especial Reference to Amphibians and Reptiles. Memoirs of the Museum of Comparative Zoölogy, 44 (2), 205–359. https://doi.org/10.5962/bhl.title.49187
  9. Bell, T. (1843) In: Darwin, C. (Ed.), The Zoology of the Voyage of the H.M.S. Beagle, Under the Command of Captain Fitzroy, R.N., During the Years 1832 to 1836. Part V. Reptiles. Smith, Elder and Co., London, vi + 50 pp., pls. 1–20.
  10. Bell, C.D. & Donoghue, M.J. (2005) Phylogeny and biogeography of Valerianaceae (Dipsacales) with special reference to the South American valerians. Organisms Diversity & Evolution, 5 (2), 147–159. https://doi.org/10.1016/j.ode.2004.10.014
  11. Bershaw, J., Garzione, C.N., Higgins, P., MacFadden, B.J., Anaya, F. & Alvarenga, H. (2010) Spatial–temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth and Planetary Science Letters, 289 (3–4), 530–538. https://doi.org/10.1016/j.epsl.2009.11.047
  12. Boulenger, G.A. (1890) First Report on Additions to the Lizard Collection in the British Museum (Natural History). Proceedings of the Zoological Society of London, 1890, 77–86, pls. VIII–XI. [Echinosaura, new genus, pp. 82–83; E. horrida, new species, pp. 83, pl. X, figs. 1 + 1a + 1b)
  13. Canales, G.M. & Goyenechea, I.G.M. (2022) Amphibian areas of endemism: a conservation priority in the threatened Mexican cloud forest. Vertebrate Zoology, 72, 235–244. https://doi.org/10.3897/vz.72.e73534
  14. Casagranda, M.D., Roig‐Juñent, S. & Szumik, C.A. (2009) Endemismo y áreas de endemismo: conceptos, métodos y aplicaciones. Revista de la Sociedad Entomológica Argentina, 68 (1–2), 51–70.
  15. Cox, C.B. (2001) The biogeographic regions reconsidered. Journal of Biogeography, 28, 511–523. https://doi.org/10.1046/j.1365-2699.2001.00566.x
  16. da Silveira Vasconcelos, T., Rodríguez, M.Á. & Hawkins, B.A. (2011) Biogeographic distribution patterns of South American amphibians: a regionalization based on cluster analysis. J. Biogeogr, 39, 1720–1732.
  17. Esquerré, D., Brennan, I.G., Catullo, R.A., Torres-Pérez, F. & Keogh, J.S. (2019) How mountains shape biodiversity: The role of the Andes in biogeography, diversification, and reproductive biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). Evolution, 73 (2), 214–230. https://doi.org/10.1111/evo.13657
  18. Doan, T.M. & Castoe, T.A. (2005) Phylogenetic taxonomy of the Cercosaurini (Squamata: Gymnophthalmidae), with new genera for species of Neusticurus and Proctoporus. Zoological Journal of the Linnean Society, 143 (3), 405–416. https://doi.org/10.1111/j.1096-3642.2005.00145.x
  19. D’Orbigny, A. & Bibron, G. (1837) Voyage dans l’Amérique Méridionale. Tome 5. 1re Partie. Reptiles. P. Bertrand, Paris and V.e Levrault Strasbourg. [unknown pagination, 1837–1847].
  20. Duellman, W.E. (1979) The herpetofauna of the Andes: patterns of distribution, origin, differentiation, and present communities. The South American herpetofauna: its origin, evolution, and dispersal, 7, 371–459. https://doi.org/10.5962/bhl.title.3207
  21. Duellman, W.E. (Ed.) (1999) Patterns of distribution of amphibians: a global perspective. JHU Press, Baltimore, Maryland, 633 pp. https://doi.org/10.56021/9780801861154
  22. Duméril, A.M.C. & Bibron, G. (1837) Erpétologie générale ou Histoire naturelle complète des Reptiles, Tome quatrième. Roret, Paris, ii + 571 pp.
  23. Duméril, A.M.C. & Bibron, G. (1839) Erpétologie Générale ou Histoire Naturelle Complète des Reptiles. Vol. 5. Roret/Fain et Thunot, Paris, 871 pp.
  24. Edler, D., Guedes, T., Zizka, A., Rosvall, M. & Antonelli, A. (2017) Infomap Bioregions: Interactive mapping of biogeographical regions from species distributions. Systematic Biology, 66 (2), 197–204. https://doi.org/10.1093/sysbio/syw087
  25. Ennen, J.R., Agha, M., Sweat, S.C., Matamoros, W.A., Lovich, J.E., Rhodin, A.G. & Hoagstrom, C.W. (2020) Turtle biogeography: Global regionalization and conservation priorities. Biological Conservation, 241, 108323. https://doi.org/10.1016/j.biocon.2019.108323
  26. Escalante, T. (2009) Un ensayo sobre regionalización biogeográfica. Revista mexicana de biodiversidad, 80 (2), 551–560. https://doi.org/10.22201/ib.20078706e.2009.002.627
  27. Escalante, T., Rodríguez, G. & Morrone, J.J. (2013) The diversification of Nearctic mammals in the Mexican transition zone. Revista Mexicana de Biodiversidad, 84 (3), 780–791.
  28. Falaschi, M., Marta, S., Lo Parrino, E., Roll, U., Meiri, S. & Ficetola, G.F. (2023) Global bioregions of reptiles confirm the consistency of bioregionalization processes across vertebrate clades. Global Ecology and Biogeography, 32 (8), 1272–1284. https://doi.org/10.1111/geb.13694
  29. Federico Arteaga Navarro, F.A. (2015) Comparative phylogeography reveals cryptic diversity and repeated patterns of cladogenesis for amphibians and reptiles in northwestern Ecuador. PLoS ONE, 11 (4), e0151746. https://doi.org/10.1371/journal.pone.0151746
  30. Ficetola, G.F., Barzaghi, B., Melotto, A., Muraro, M., Lunghi, E., Canedoli, C. & Manenti, R. (2018) N-mixture models reliably estimate the abundance of small vertebrates. Scientific Reports, 8 (1), 10357. https://doi.org/10.1038/s41598-018-28432-8
  31. Flores, G.E. & Roig-Juñent, S. (2001) Cladistic and biogeographic analyses of the Neotropical genus Epipedonota Solier (Coleoptera: Tenebrionidae), with conservation considerations. Journal of the New York Entomological Society, 109 (3), 309–336. https://doi.org/10.1664/0028-7199(2001)109[0309:CABAOT]2.0.CO;2
  32. Foufopoulos, J., Kilpatrick, A.M. & Ives, A.R. (2011) Climate change and elevated extinction rates of reptiles from Mediterranean islands. The American Naturalist, 177 (1), 119–129. https://doi.org/10.1086/657624
  33. Garreaud, R.D. (2009) The Andes climate and weather. Advances in geosciences, 22, 3–11. https://doi.org/10.5194/adgeo-22-3-2009
  34. Garzione, C.N., Hoke, G.D., Libarkin, J.C., Withers, S., MacFadden, B., Eiler, J. & Mulch, A. (2008) Rise of the Andes. Science, 320 (5881), 1304–1307. https://doi.org/10.1126/science.1148615
  35. Ctenoblepharys. (2025) GBIF Occurrence Download. GBIF.org. Available from: https://doi.org/10.15468/dl.bm9d85 (accessed 10 March 2025)
  36. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.dk3ms3 (accessed 10 March 2025)
  37. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.2t9ykd (accessed 10 March 2025)
  38. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.5dma3h (accessed 10 March 2025)
  39. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.756m6g (accessed 10 March 2025)
  40. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.ayq7wc (accessed 10 March 2025)
  41. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.tnv2fr (accessed 10 March 2025)
  42. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.h3atb4 (accessed 10 March 2025)
  43. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.wm36df (accessed 10 March 2025)
  44. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.73chvh (accessed 10 March 2025)
  45. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.g92rjb (accessed 10 March 2025)
  46. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.cum4cs (accessed 10 March 2025)
  47. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.tuw3bj (accessed 10 March 2025)
  48. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.b2pz4g (accessed 10 March 2025)
  49. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.h5u8s3 (accessed 10 March 2025)
  50. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.dcx6cw (accessed 26 May 2025)
  51. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.fksw4w (accessed 26 May 2025)
  52. GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.hggznj (accessed 26 May 2025)
  53. Wilsonosaura GBIF.org (2025) GBIF Occurrence Download. Available from: https://doi.org/10.15468/dl.yk6ufa (accessed 26 May 2025)
  54. Gengler-Nowak, K. (2002) Reconstruction of the biogeographical history of Malesherbiaceae. The Botanical Review, 68 (1), 171–188. https://doi.org/10.1663/0006-8101(2002)068[0171:ROTBHO]2.0.CO;2
  55. Ghosh, P., Garzione, C.N. & Eiler, J.M. (2006) Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates. Science, 311 (5760), 511–515. https://doi.org/10.1126/science.1119365
  56. Gray, J.E. (1858) Description of Riama, a New Genus of Lizards, forming a distinct Family. Annals and Magazine of Natural History, Series 3, 1858, 444–446. [Riama, new genus, pp. 445; R. unicolor, new species, pp. 446, pl. XV, fig. 2] https://doi.org/10.1111/j.1469-7998.1858.tb06398.x
  57. Godinho, M.B.D.C. & Da Silva, F.R. (2018) The influence of riverine barriers, climate, and topography on the biogeographic regionalization of Amazonian anurans. Scientific Reports, 8 (1), 3427. https://doi.org/10.1038/s41598-018-21879-9
  58. Goloboff, P.A., Szumik, C.A. & Casagranda, D. (2006) NDM/VNDM: Programs for the identification of areas of endemism. Bioinformatics, 22 (14), 1928–1929. https://doi.org/10.1093/bioinformatics/btl268
  59. Gómez, J.M.D. (2007) Endemism in Liolaemus (Iguania: Liolaemidae) from the argentinian puna. South American Journal of Herpetology, 2 (1), 59–68. https://doi.org/10.2994/1808-9798(2007)2[59:EILILF]2.0.CO;2
  60. Graham, A. (2009) The Andes: a geological overview from a biological perspective. Annals of the Missouri Botanical Garden, 96 (3), 371–385. https://doi.org/10.3417/2007146
  61. Gregory-Wodzicki, K.M. (2000) Uplift history of the Central and Northern Andes: a review. Geological society of America bulletin, 112 (7), 1091–1105. https://doi.org/10.1130/0016-7606(2000)112%3C1091:UHOTCA%3E2.0.CO;2
  62. Montiel-Canales, G., Castillo-Cerón, J.M. & Goyenechea, I. (2019) Conserving Endemic Lizards in Mexico through Areas of Endemism and Temporal Strata. South American Journal of Herpetology, 14 (3), 177–187. https://doi.org/10.2994/SAJH-D-17-00077.1
  63. Hengeveld, R. (1990) Dynamic Biogeography. Cambridge University Press, Cambridge, xiv + 250 pp.
  64. Hibbard, T.N., Andrade-Díaz, M.S. & Díaz-Gómez, J.M. (2018) But they move! Vicariance and dispersal in southern South America: Using two methods to reconstruct the biogeography of a clade of lizards endemic to South America. PLoS ONE, 13 (9), e0202339. https://doi.org/10.1371/journal.pone.0202339
  65. Hughes, C. & Eastwood, R. (2006) Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences, 103 (27), 10334–10339. https://doi.org/10.1073/pnas.0601928103
  66. Kreft, H. & Jetz, W. (2010) A framework for delineating biogeographical regions based on species distributions. Journal of Biogeography, 37 (11), 2029–2053. https://doi.org/10.1111/j.1365-2699.2010.02375.x
  67. Köhler, G. (2003) Two new species of Euspondylus (Squamata: Gymnophthalmidae) from Peru. Salamandra, 39 (1), 5–20.
  68. Lacroix, R. (2020) Digest: The contribution of historical climate events in shaping the modern latitudinal diversity gradient of ancient reptiles. Evolution, 74 (9), 2168–2169. https://doi.org/10.1111/evo.14069
  69. Li, Q., Shao, W., Jiang, Y., Yan, C. & Liao, W. (2024) Assessing Reptile Conservation Status under Global Climate Change. Biology, 13, 436. https://doi.org/10.3390/biology13060436
  70. Loewenberg-Neto, P. (2015) Andean region: a shapefile of Morrone’s (2015) biogeographical regionalisation. Zootaxa, 3985 (4), 600. https://doi.org/10.11646/zootaxa.3985.4.9
  71. Lomolino, M.V., Riddle, B.R., Whittaker, R.J. & Brown, J.H. (2010) Biogeography. 4th Edition. Sinauer Associates, Sunderland, Massachusetts, xiv + 878 pp.
  72. Luebert, F. & Weigend, M. (2014) Phylogenetic insights into Andean plant diversification. Frontiers in Ecology and Evolution, 2, 27. https://doi.org/10.3389/fevo.2014.00027
  73. Mackey, B.G., Berry, S.L. & Brown, T. (2008) Reconciling approaches to biogeographical regionalization: a systematic and generic framework examined with a case study of the Australian continent. Journal of Biogeography, 35 (2), 213–229. https://doi.org/10.1111/j.1365-2699.2007.01822.x
  74. McDiarmid, R.W. & Donnelly, M.A. (2005) The herpetofauna of the Guayana Highlands: amphibians and reptiles of the Lost World. In: Donnelly, M.A., Crother, B.I., Guyer, C., Wake, M.H. & White, M.E. (Eds.), Ecology and Evolution in the Tropics: A Herpetological Perspective. University of Chicago Press, Chicago, Illinois, pp. 461–560.
  75. Meseguer, A.S. & Condamine, F.L. (2020) Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient*. Evolution, 74 (9), 1966–1987. https://doi.org/10.1111/evo.13967
  76. Moravec, J., Šmíd, J., Štundl, J. & Lehr, E. (2018) Systematics of Neotropical microteiid lizards (Gymnophthalmidae, Cercosaurinae), with the description of a new genus and species from the Andean montane forests. ZooKeys, 774, 105–139. https://doi.org/10.3897/zookeys.774.25332
  77. Moore, B.R. & Donoghue, M.J. (2007) Correlates of diversification in the plant clade Dipsacales: geographic movement and evolutionary innovations. The American Naturalist, 170 (S2), S28–S55. https://doi.org/10.1086/519460
  78. Moreno, P.I., Villagrán, C.A.R.O.L.I.N.A., Marquet, P.A. & Marshall, L.G. (1994) Quaternary paleobiogeography of northern and central Chile. Revista Chilena de Historia Natural, 67, 487–502.
  79. Morrone, J.J. (2002) Guest Editorial: Biogeographical Regions under Track and Cladistic Scrutiny. Journal of Biogeography, 29 (2), 149–152. https://doi.org/10.1046/j.1365-2699.2002.00662.x
  80. Morrone, J.J. (2015) Biogeographical regionalisation of the Andean region. Zootaxa, 3936 (2), 207–236. https://doi.org/10.11646/zootaxa.3936.2.3
  81. Myers, N., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403 (6772), 853–858. https://doi.org/10.1038/35002501
  82. Noble, G.K. (1921) Some New Lizards from Northwestern Peru. Annals of the New York Academy of Sciences, 29, 133–139. https://doi.org/10.1111/j.1749-6632.1920.tb55353.x
  83. Norman, M. (2003) Biodiversity hotspots revisited. BioScience, 53 (10), 916–917. https://doi.org/10.1641/0006-3568(2003)053[0916:BHR]2.0.CO;2
  84. Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S.B., Linder, H.P. & Schneeweiss, G.M. (2018) Hotspots within a global biodiversity hotspot-areas of endemism are associated with high mountain ranges. Scientific reports, 8 (1), 10345. https://doi.org/10.1038/s41598-018-28504-9
  85. Pinto, R. & Luebert, F. (2009) Data on the vascular flora of the coastal desert of Arica and Tarapaca, Chile, and its phytogeographical relationships with Southern Peru. Gayana Botánica, 66 (1), 28–49. https://doi.org/10.4067/S0717-66432009000100004
  86. Pyron, R.A. (2014) Temperate extinction in squamate reptiles and the roots of latitudinal diversity gradients. Global Ecology and Biogeography, 23 (10), 1126–1134. https://doi.org/10.1111/geb.12196
  87. Reid, W.V. (1998) Biodiversity hotspots. Trends in ecology & evolution, 13 (7), 275–280. https://doi.org/10.1016/S0169-5347(98)01363-9
  88. Rivera, D., Arenas-Moreno, D. & Méndez-De la Cruz, F.R. (2021) Bioregionalization of Sceloporus lizards using Infomap Bioregions. Ecology and Evolution, 11 (14), 9795–9808. https://doi.org/10.1002/ece3.7774
  89. Rivero, J.A. (2000) Distribution, species-richness, endemism, and conservation of Venezuelan amphibians and reptiles. Amphibian and Reptile Conservation, 2 (2), 42–70.
  90. Romano, G.M. (2017) A high resolution shapefile of the Andean biogeographical region. Data in brief, 13, 230. https://doi.org/10.1016/j.dib.2017.05.039
  91. Rueda, M., Rodríguez, M.Á. & Hawkins, B.A. (2010) Towards a biogeographic regionalization of the European biota. Journal of Biogeography, 37 (11), 2067–2076. https://doi.org/10.1111/j.1365-2699.2010.02388.x
  92. Salvin, O. (1860) On the reptiles of Guatemala. Proc. zool. Soc. London, 1860, 451–461.
  93. Scherson, R.A., Vidal, R. & Sanderson, M.J. (2008) Phylogeny, biogeography, and rates of diversification of New World Astragalus (Leguminosae) with an emphasis on South American radiations. American Journal of Botany, 95 (8), 1030–1039. https://doi.org/10.3732/ajb.0800017
  94. Schulte, J.A., Macey, J.R., Espinoza, R.E. & Larson, A. (2000) Phylogenetic relationships in the iguanid lizard genus Liolaemus: multiple origins of viviparous reproduction and evidence for recurring Andean vicariance and dispersal. Biological Journal of the Linnean Society, 69 (1), 75–102. https://doi.org/10.1006/bijl.1999.0346
  95. Silva, J.M.C. & Casteleti, C.H.M. (2005) Estado da biodiversidade da Mata Atlântica brasileira. In: Galindo-Leal, C. & Câmara, I.G. (Eds.), Mata Atlântica: Biodiversidade, Ameaças e Perspectivas. Fundação SOS Mata Atlântica-Conservação Internacional, Belo Horizonte, pp. 43–59.
  96. Strecker, M.R., Alonso, R.N., Bookhagen, B., Carrapa, B., Hilley, G.E., Sobel, E.R. & Trauth, M.H. (2007) Tectonics and climate of the southern central Andes. Annual Review of Earth and Planetary Sciences, 35 (1), 747–787. https://doi.org/10.1146/annurev.earth.35.031306.140158
  97. Swenson, J.J., Young, B.E., Beck, S., Comer, P., Córdova, J.H., Dyson, J. & Zambrana-Torrelio, C.M. (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC ecology, 12, 1–19. https://doi.org/10.1186/1472-6785-12-1
  98. Szumik, C.A. & Goloboff, P.A. (2004) Areas of endemism: an improved optimality criterion. Systematic biology, 53 (6), 968–977. https://doi.org/10.1080/10635150490888859
  99. Szumik, C.A., Cuezzo, F., Goloboff, P.A. & Chalup, A.E. (2002) An optimality criterion to determine areas of endemism. Systematic Biology, 51 (5), 806–816. https://doi.org/10.1080/10635150290102483
  100. Tan, W.C., Herrel, A. & Rödder, D. (2023) A global analysis of habitat fragmentation research in reptiles and amphibians: what have we done so far?. Biodiversity and Conservation, 32 (2), 439–468. https://doi.org/10.1007/s10531-022-02530-6
  101. Torres-Carvajal, O., Lobos, S.E., Venegas, P.J., Chávez, G., Aguirre-Peñafiel, V., Zurita, D. & Echevarría, L.Y. (2016) Phylogeny and biogeography of the most diverse clade of South American gymnophthalmid lizards (Squamata, Gymnophthalmidae, Cercosaurinae). Molecular Phylogenetics and Evolution, 99, 63–75. https://doi.org/10.1016/j.ympev.2016.03.006
  102. Tschudi, J.J. von (1845) Reptilium conspectum quae in republica Peruana reperiuntur er pleraque observata vel collecta sunt in itenere. Archiv für Naturgeschichte, 11 (1), 150–170. https://doi.org/10.5962/bhl.part.7963
  103. Turchetto‐Zolet, A.C., Pinheiro, F., Salgueiro, F. & Palma‐Silva, C. (2013) Phylogeographical patterns shed light on evolutionary process in South America. Molecular ecology, 22 (5), 1193–1213. https://doi.org/10.1111/mec.12164
  104. Uetz, P., Freed, P. & Hošek, J. (Eds.) (2025) The Reptile Database. Available from: http://www.reptile-database.org
  105. Urbina-Cardona, J.N. (2011) Gradientes andinos en la diversidad y patrones de endemismo en anfibios y reptiles de Colombia: Posibles respuestas al cambio climático. Revista Facultad de Ciencias Básicas, 7 (1), 74–91.
  106. Vargas, J. & Zambrana-Torrelio, C.M. (2012) Plant and animal endemism in the eastern Andean slope: challenges to conservation. BMC Ecology, 12, 1. https://doi.org/10.1186/1472-6785-12-1
  107. Vasconcelos, T., Prado, H.M., da Silva, R. & Haddad, F.B. (2014) Biogeographic Distribution Patterns and Their Correlates in the Diverse Frog Fauna of the Atlantic Forest Hotspot. Available from: http://ncbi.nlm.nih.gov (accessed 11 November 2025) https://doi.org/10.1371/journal.pone.0104130
  108. Vidal, M.A., Henríquez, N., Torres-Díaz, C., Collado, G. & Acuña-Rodríguez, I.S. (2024) Identifying strategies for effective biodiversity preservation and species status of Chilean amphibians. Biology, 13 (3), 169. https://doi.org/10.3390/biology13030169
  109. Wagler, J. (1824) Serpentum Brasiliensium species novae ou Histoire Naturelle des espèces nouvelles de serpens, recueillies et observées pendant le voyage dans l’intérieur du Brésil dans les annés 1817, 1818, 1819, 1820 exécuté par ordre de sa Majesté le Roi de Bavière. In: de Spix, J., Animalia nova sivespecies novae. Typis Franc. Seraph. Hübschmanni, Monaco, pp. 1–75.
  110. Wagler, J.G. (1830) Natürliches System der Amphibien, mit vorangehender Classification der Säugetiere und Vögel. Ein Beitrag zur vergleichenden Zoologie. 1.0. Cotta, München, Stuttgart, and Tübingen, 354 pp. [1830–1832] https://doi.org/10.5962/bhl.title.108661
  111. Wiegmann, A.F.A. (1834) Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde. Siebente Abhandlung. Amphibien. Nova Acta Physico-Medica, Academiae Caesare Leopoldino-Carolinae, 17, 185–268, pls. XIII–XXII.
  112. Wiegmann, A.F.A. (1835) Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde, von Dr. F.J.F. Meyen, siebente Abhandlung. Amphibien. Nova Acta Physico-Medica Academiae Caesareae Leopoldino-Carolinae, 17, 185–268.

How to Cite

Gómez, J.M.D. (2025) Endemism and regionalization in the Andes: What do reptiles tell us?. Zootaxa, 5737 (1), 1–33. https://doi.org/10.11646/zootaxa.5737.1.1