Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2026-02-13
Page range: 1-25
Abstract views: 166
PDF downloaded: 73

Dragons of the deep (Stomiiformes: Stomiidae): Evolutionary relationships and taxonomy of the barbeled dragonfishes (Stomiinae) and viperfishes (Chauliodontinae)

Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence; Kansas 66045; Museum of Southwestern Biology; University of New Mexico; Albuquerque; New Mexico 87131
Biodiversity Institute; University of Kansas; Lawrence; Kansas 66045; Department of Ecology and Evolutionary Biology; University of Kansas; Lawrence; Kansas 66045
Department of Biology & Chemistry; St. Cloud State University; 720 4 Avenue South; St. Cloud; Minnesota 56303
Pisces Phylogenomics Evolution Deep sea Taxonomy

Abstract

The stomiiforms are a diverse radiation of ray-finned fishes found in pelagic deep-sea environments, with taxa encompassing the barbeled dragonfishes including more than 350 species placed in the family Stomiidae. Barbeled dragonfishes are a diverse lineage of stomiiforms with most taxa and nearly all stomiines having a bioluminescent chin barbel that is hypothesized to be used for conspecific communication and prey attraction. Prior studies on the evolutionary relationships of the stomiids have produced conflicting hypotheses regarding the monophyly of the order’s families and subfamilies and the interrelationships among genera. In this study, we investigate the evolutionary relationships among the stomiids and present a novel hypothesis of evolutionary relationships for the family based on data from ultraconserved elements (UCEs), protein-coding gene fragments, and morphology. Our combined dataset includes 29 of the 35 currently recognized stomiid genera sensu Smith et al. (2024) with taxonomic representatives from all previously recognized stomiid subfamilies and tribes. Our resulting evolutionary hypotheses conflict with the current classification of the family, rendering several currently recognized clades as para- or polyphyletic. These findings necessitate a revised classification that reflects monophyletic groups. Herein, we present a revised classification of the Stomiidae that recognizes the distinct tribal lineages of the barbeled dragonfishes.

 

References

  1. Barnett, M.A. & Gibbs Jr., R.H. (1968) Four new stomiatoid fishes of the genus Bathophilus with a revised key to the species of Bathophilus. Copeia, 1968 (4), 826–832. https://doi.org/10.2307/1441850
  2. Beebe, W. (1932) A new deep-sea fish. Bulletin of the New York Zoological Society, 35 (5), 175–177.
  3. Beebe, W. (1934) n.k. In: Half Mile Down. Harcourt, Brace and Company, New York, New York. https://doi.org/10.5962/bhl.title.10166
  4. Betancur-R., R., Broughton, R.E., Wiley, E.O., Carpenter, K., López, J.A., Li, C., Holcroft, N.I., Arcila, D., Sanciangco, M., Cureton, II, J.C., Zhang, F., Buser, T., Campbell, M.A., Ballesteros, J.A., Roa-Varon, A., Willis, S., Borden, W.C., Rowley, T., Reneau, P.C., Hough, D.J., Lu, G., Grande, T., Arratia, G. & Ortí, G. (2013) The tree of life and a new classification of bony fishes. PLoS Currents Tree of Life, 5, ecurrents.tol.53ba26640df0ccaee75bb165c8c26288. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288
  5. Butler, M.S., Bollens, B., Burkhalter, L.M. & Horgan, E. (2001) Mesopelagic fishes of the Arabian Sea: distribution, abundance, and diet of Chauliodus pammelas, Chauliodus sloani, Stomias affinis and Stomias nebulosus. Deep Sea Research Part II: Topical Studies in Oceanography, 48 (6–7), 1369–1383. https://doi.org/10.1016/S0967-0645(00)00143-0
  6. Chernomor, O., von Haeseler, A. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65 (6), 997–1008. https://doi.org/10.1093/sysbio/syw037
  7. Clarke, T. (1982) Feeding habits of stomiatoid fishes from Hawaiian waters. Fishery Bulletin, 80 (2), 287–304.
  8. Crawford, N.G., Faircloth, B.C., McCormack, J.E., Brumfield, R.T., Winker, K. & Glenn, T.C. (2012) More than 1000 ultraconserved elements provide evidence that turtles are the sister group of archosaurs. Biology Letters, 8 (5), 783–786. https://doi.org/10.1098/rsbl.2012.0331
  9. Davis, M.P., Holcroft, N.I., Wiley, E.O., Sparks, J.S. & Smith, W.L. (2014) Species-specific bioluminescence facilitates speciation in the deep-sea. Marine Biology, 161, 1139–1148. https://doi.org/10.1007/s00227-014-2406-x
  10. Davis, M.P., Sparks, J.S. & Smith, W.L. (2016) Repeated and widespread evolution of bioluminescence in marine fishes. PLoS ONE, 11 (6), e0155154. https://doi.org/10.1371/journal.pone.0155154
  11. DeArmon, E. (2019) Dragons of the deep: Evolutionary phylogenomic relationships of Stomiidae (dragonfishes) and the evolution of their bioluminescent barbels. Master’s Thesis, St. Cloud State University, St. Cloud, Minnesota. Available from: https://repository.stcloudstate.edu/biol_etds/40 (accessed 9 December 2025)
  12. Denton, E.J. (1970) On the organization of reflecting surfaces in some marine animals. Philosophical Transactions of the Royal Society of London, Series B, 258 (824), 285–313. https://doi.org/10.1098/rstb.1970.0037
  13. Denton, E.J., Herring, P.J., Widder, E.A., Latz, M.F. & Case, J.F. (1985) The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proceedings of the Royal Society of London, Series B, 225 (1238), 63–97. https://doi.org/10.1098/rspb.1985.0051
  14. Douglas, R.H., Mullineaux, C.W. & Partridge, J.C. (2000) Long-wave sensitivity in deep-sea stomiid dragonfish with far-red bioluminescence: evidence for a dietary origin of the chlorophyll-derived retinal photosensitizer of Malacosteus niger. Philosophical Transactions of the Royal Society of London, Series B, 355 (1401), 1269–1272. https://doi.org/10.1098/rstb.2000.0681
  15. Douglas, R.H., Partridge, J.C. & Marshall, N.J. (1998) The eyes of deep-sea fish I: lens pigmentation, tapeta and visual pigments. Progress in Retinal and Eye Research, 17 (4), 597–636. https://doi.org/10.1016/S1350-9462(98)00002-0
  16. Drazen, J.C. & Sutton, T.T. (2017) Dining in the deep: the feeding ecology of deep-sea fishes. Annual Review of Marine Science, 9, 337–366. https://doi.org/10.1146/annurev-marine-010816-060543
  17. Faircloth, B.C. (2016) PHYLUCE is a software package for the analysis of conserved genomic loci. Bioinformatics, 32 (5), 786–788. https://doi.org/10.1093/bioinformatics/btv646
  18. Faircloth, B.C., McCormack, J.E., Crawford, N.G., Harvey, M.G., Brumfield, R.T. & Glenn, T.C. (2012) Ultraconserved elements anchor thousands of genetic markers for target enrichment spanning multiple evolutionary timescales. Systematic Biology, 61 (5), 717–726. https://doi.org/10.1093/sysbio/sys004
  19. Faircloth, B.C., Sorenson, L., Santini, F. & Alfaro, M.E. (2013) A phylogenomic perspective on the radiation of ray-finned fishes based upon targeted sequencing of ultraconserved elements (UCEs). PLoS ONE, 8, e65923. https://doi.org/10.1371/journal.pone.0065923
  20. Fink, W.L. (1984) Stomiiforms: relationships. In: Moser, H.G., Richards, W.J., Cohen, D.M., Fahay, M.P., Kendall Jr., A.W. & Richardson, S.L. (Eds.), Ontogeny and Systematics of Fishes. American Society of Ichthyologists and Herpetologists Special Publication No. 1. American Society of Ichthyologists and Herpetologists, Lawrence, Kansas, pp. 181–184.
  21. Fink, W.L. (1985) Phylogenetic interrelationships of the stomiid fishes (Teleostei: Stomiiformes). Miscellaneous Publications of the Museum of Zoology, University of Michigan, 171, 1–127.
  22. Fink, W.L. & Weitzman, S.H. (1982) Relationships of the stomiiform fishes (Teleostei), with a description of Diplophos. Bulletin of the Museum of Comparative Zoology, 150 (2), 31–93.
  23. Fricke, R., Eschmeyer, W.N. & van der Laan, R. (2025) Eschmeyer’s Catalog of Fishes: Genera, Species, References. Available from: https://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 31 July 2025)
  24. Gartner Jr., J.V., Crabtree, R.E. & Sulak, K.J. (1997) Deep-sea fishes: feeding at depth. In: Randall, D.J. & Farrell, A.P. (Eds.), Deep-sea Fishes. Academic Press, San Diego, California, pp. 115–193. https://doi.org/10.1016/S1546-5098(08)60229-0
  25. Ghezelayagh, A., Harrington, R.C., Burress, E.D., Campbell, M.A., Buckner, J.C., Chakrabarty, P., Glass, J.R., McCraney, W.T., Unmack, P.J., Thacker, C.E., Alfaro, M.E., Friedman, S.T., Ludt, W.B., Cowman, P.F., Friedman, M., Price, S.A., Dornburg, A., Faircloth, B.C., Wainwright, P.C. & Near, T.J. (2022) Prolonged morphological expansion of spiny-rayed fishes following the end-Cretaceous. Nature Ecology & Evolution, 6, 1211–1220. https://doi.org/10.1038/s41559-022-01801-3
  26. Gibbs Jr., R.H. (1964a) Family Astronesthidae. In: Bigelow, H. B., Cohen, D. M., Dick, M. M., Gibbs, R. H., Grey, M., Morrow, J. E., Schultz, L. P., & Walters, V. (Eds.), Fishes of the Western North Atlantic. Part 4. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 311–350. https://doi.org/10.12987/9781933789279-011
  27. Gibbs Jr., R.H. (1964b) Family Idiacanthidae. In: Bigelow, H. B., Cohen, D. M., Dick, M. M., Gibbs, R. H., Grey, M., Morrow, J. E., Schultz, L. P., & Walters, V. (Eds.), Fishes of the Western North Atlantic. Part 4. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 512–522. https://doi.org/10.12987/9781933789279-013
  28. Gibbs Jr., R.H. (1969) Taxonomy, sexual dimorphism, vertical distribution, and evolutionary zoogeography of the bathypelagic fish genus Stomias (Stomiatidae). Smithsonian Contributions to Zoology, 31, 1–25. https://doi.org/10.5479/si.00810282.31
  29. Gibbs Jr., R.H., Clarke, T.A. & Gomon, J.R. (1983) Taxonomy and distribution of the stomioid fish genus Eustomias (Melanostomiidae), I: subgenus Nominostomias. Smithsonian Contributions to Zoology, 380, 1–139. https://doi.org/10.5479/si.00810282.380
  30. Girard, M.G., Davis, M.P. & Smith, W.L. (2020) The phylogeny of carangiform fishes: morphological and genomic investigations of a new fish clade. Copeia, 108 (2), 265–298. https://doi.org/10.1643/ci-19-320
  31. Goodyear, P.J. & Gibbs Jr., R.H. (1969) Systematics and zoogeography of stomiatoid fishes of the Astronesthes cyaneus species group (Family Astronesthidae) with descriptions of three new species. Archiv für Fischereiwissenschaft, 20 (2/3), 107–131.
  32. Greenwood, P.H., Rosen, D.E., Weitzman, S.H. & Myers, G.S. (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bulletin of the American Museum of Natural History, 131 (4), 339–455.
  33. Greven, H., Walker, Y. & Zanger, K. (2009) On the structure of teeth in the viperfish Chauliodus sloani Bloch and Schneider, 1801 (Stomiidae). Bulletin of Fish Biology, 11 (1/2), 87–98.
  34. Harold, A.S. & Weitzman, S.H. (1996) Interrelationships of stomiiform fishes. In: Stiassny, M.L.J., Parenti, L.R. & Johnson, G.D. (Eds.), Interrelationship of Fishes. 2nd Edition. Academic Press, San Diego, California, pp. 333–353. https://doi.org/10.1016/B978-012670950-6/50014-X
  35. Harrington, R.C., Faircloth, B.C., Eytan, R.I., Smith, W.L., Near, T.J., Alfaro, M.E. & Friedman, M. (2016) Phylogenomic analysis of carangimorph fishes reveals flatfish asymmetry arose in a blink of the evolutionary eye. BMC Evolutionary Biology, 16, 224. https://doi.org/10.1186/s12862-016-0786-x
  36. Herring, P.J. (2007) Sex with the lights on? A review of bioluminescent sexual dimorphism in the sea. Journal of the Marine Biological Association of the United Kingdom, 87 (4), 829–842. https://doi.org/10.1017/S0025315407056433
  37. Herring, P.J. & Cope, C. (2005) Red bioluminescence in fishes: on the suborbital photophores of Malacosteus, Pachystomias and Aristostomias. Marine Biology, 148, 383–394. https://doi.org/10.1007/s00227-005-0085-3
  38. Jorgensen, J.M. & Munk, O. (1979) Photophores and presumably luminous chin barbel and pectoral fin ray filaments of Thysanactis dentex (Pisces: Stomiatoidea). Acta Zoologica, 60 (1), 33–42. https://doi.org/10.1111/j.1463-6395.1979.tb00596.x
  39. Katoh, K. & Standley, D.M. (2013) MAFFT multiple-sequence-alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010
  40. Kenaley, C.P. (2012) Exploring feeding behavior in deep-sea dragonfishes (Teleostei: Stomiidae): jaw biomechanics and functional significance of a loosejaw. Biological Journal of the Linnean Society, 106 (1), 224–240. https://doi.org/10.1111/j.1095-8312.2012.01854.x
  41. Kenaley, C.P., DeVaney, S.C. & Fjeran, T.T. (2014) The complex evolutionary history of seeing red: molecular phylogeny and the evolution of an adaptive visual system in deep-sea dragonfishes (Stomiiformes: Stomiidae). Evolution, 68 (4), 996–1013. https://doi.org/10.1111/evo.12322
  42. Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29 (6), 1695–1701. https://doi.org/10.1093/molbev/mss020
  43. Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014) Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14, 82. https://doi.org/10.1186/1471-2148-14-82
  44. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773. https://doi.org/10.1093/molbev/msw260
  45. Lewis, P.O. (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50 (6), 913–925. https://doi.org/10.1080/106351501753462876
  46. Longo, S.J., Faircloth, B.C., Meyer, A., Westneat, M.W., Alfaro, M.E. & Wainwright, P.C. (2017) Phylogenomic analysis of a rapid radiation of misfit fishes (Syngnathiformes) using ultraconserved elements. Molecular Phylogenetics and Evolution, 113, 33–48. https://doi.org/10.1016/j.ympev.2017.05.002
  47. Maddison, W.P. & Maddison, D.R. (2025) Mesquite: a modular system for evolutionary analysis, vers. 4.01. Available from: https://www.mesquiteproject.org
  48. Maile, A.J., Smith, W.L. & Davis, M.P. (2025) A total-evidence phylogenetic approach to understanding the evolution, depth transitions, and body-shape changes in the anglerfishes and allies (Acanthuriformes: Lophioidei). PLoS ONE, 20 (5), e0322369. https://doi.org/10.1371/journal.pone.0322369
  49. Marshall, N.B. (1954) Aspects of Deep-sea Biology. Hutchinson’s Scientific and Technical Publications, London, 380 pp.
  50. Martin, R.P., Olson, E.E., Girard, M.G., Smith, W.L. & Davis, M.P. (2018) Light in the darkness: new perspectives on lanternfish relationships and classification using genomic and morphological data. Molecular Phylogenetics and Evolution, 121, 71–85. https://doi.org/10.1016/j.ympev.2017.12.029
  51. May, Z.A. (2019) Evolutionary relationships and evolution of body shape of the deep-sea hatchetfishes (Stomiiformes: Sternoptychidae). Master’s Thesis, St. Cloud State University, St. Cloud, Minnesota. Available from: https://repository.stcloudstate.edu/biol_etds/43 (accessed 9 December 2025)
  52. McCormack, J.E., Faircloth, B.C., Crawford, N.G., Gowaty, P.A., Brumfield, R.T. & Glenn, T.C. (2012) Ultraconserved elements are novel phylogenomic markers that resolve placental mammal phylogeny when combined with species-tree analysis. Genome Research, 22, 746–754. https://doi.org/10.1101/gr.125864.111
  53. McCormack, J.E., Harvey, M.G., Faircloth, B.C., Crawford, N.G., Glenn, T.C. & Brumfield, R.T. (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS ONE, 8 (1), e54848. https://doi.org/10.1371/journal.pone.0054848
  54. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37 (5), 1530–1534. https://doi.org/10.1093/molbev/msaa015
  55. Mirande, J.M. (2017) Combined phylogeny of ray-finned fishes (Actinopterygii) and the use of morphological characters in large-scale analyses. Cladistics, 33 (4), 333–350. https://doi.org/10.1111/cla.12171
  56. Morrow, J.E. (1964a) Family Chauliodontidae. In: Fishes of the Western North Atlantic. Part 4. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 274–289. https://doi.org/10.12987/9781933789279-009
  57. Morrow, J.E. (1964b) Family Stomiatidae. In: Fishes of the Western North Atlantic. Part 4. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 290–310. https://doi.org/10.12987/9781933789279-010
  58. Morrow, J.E. (1964c) Family Malacosteidae. In: Fishes of the Western North Atlantic. Part 4. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 523–549. https://doi.org/10.12987/9781933789279-014
  59. Morrow, J.E. & Gibbs Jr., R.H. (1964) Family Melanostomiatidae. In: Fishes of the Western North Atlantic. Part 4. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 351–549.
  60. Muntz, W.R.A. (1976) On yellow lenses in mesopelagic animals. Journal of the Marine Biological Association of the United Kingdom, 56, 963–976. https://doi.org/10.1017/S0025315400021019
  61. Nafpaktitis, B.G., Backus, R.H., Craddock, J.E., Haedrich, R.L., Robison, B.H. & Karnella, C. (Eds.) (1977) Order Iniomi (Myctophiformes), Neoscopelidae and Myctophidae, and Atlantic mesopelagic zoogeography. In: Fishes of the Western North Atlantic. Part 7. Sears Foundation for Marine Research, New Haven, Connecticut, pp. 1–299.
  62. Near, T.J., Eytan, R.I., Dornburg, A., Kuhn, K.L., Moore, J.A., Davis, M.P., Wainwright, P.C., Friedman, M. & Smith, W.L. (2012) Resolution of ray-finned fish phylogeny and timing of diversification. Proceedings of the National Academy of Sciences of the United States of America, 109 (34), 13698–13703. https://doi.org/10.1073/pnas.1206625109
  63. Nelson, J.S. (2006) Fishes of the World. 4th Edition. John Wiley & Sons, Hoboken, New Jersey, 624 pp.
  64. Nelson, J.S., Grande, T.C. & Wilson, M.V.H. (2016) Fishes of the World. 5th Edition. John Wiley & Sons, Hoboken, New Jersey, 752 pp.
  65. Parin, N.V. & Borodulina, O.D. (1993) A new mesobenthic fish, Eupogonesthes xenicus (Astronesthidae), from the eastern Indian Ocean. Journal of Ichthyology, 33 (8), 111–116.
  66. Parin, N.V. & Borodulina, O.D. (2003) Phylogeny, systematics, and zoogeography of the mesopelagic genus Astronesthes (Astronesthidae, Stomiiformes). Journal of Ichthyology, 43 (8), 557–576.
  67. Parin, N.V. & Novikova, N.S. (1974) Taxonomy of viperfishes (Chauliodontidae, Osteichthyes) and their distribution in the world ocean. Trudy Instituta Okeanologii Imeni P. P. Shirshova, 96, 255–315.
  68. Partridge, J.C. & Douglas, R.H. (1995) Far-red sensitivity of dragon fish. Nature, 375, 21–22. https://doi.org/10.1038/375021a0
  69. Rabosky, D.L., Chang, J., Title, P.O., Cowman, P.F., Sallan, L., Friedman, M., Kaschner, K., Garilao, C., Near, T.J., Coll, M. & Alfaro, M.E. (2018) An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559, 392–395. https://doi.org/10.1038/s41586-018-0273-1
  70. Regan, C.T. & Trewavas, E. (1929) The fishes of the families Astronesthidae and Chauliodontidae. Danish Dana Expedition in the North Atlantic and Gulf of Panama, 1920–1922, Report No. 5, 1–39. https://doi.org/10.1163/9789004629486_008
  71. Regan, C.T. & Trewavas, E. (1930) The fishes of the families Stomiatidae and Malacosteidae. Danish Dana Expedition in the North Atlantic and Gulf of Panama, 1920–1922, Report No. 6, 1–143. https://doi.org/10.1163/9789004629493_001
  72. Sabaj, M.H. (2020) Codes for natural history collections in ichthyology and herpetology. Copeia, 108 (3), 593–669. https://doi.org/10.1643/ASIHCODONS2020
  73. Schnell, N.K. & Johnson, G.D. (2012) Ontogenetic fusion of the third and fourth pharyngobranchial in barbeled dragonfishes (Stomiidae, Teleostei) with a revision of the identity of the single posterior upper pharyngeal toothplate. Copeia, 2012 (3), 394–407. https://doi.org/10.1643/CG-11-051
  74. Schnell, N.K. & Johnson, G.D. (2017) Evolution of a functional head joint in deep-sea fishes (Stomiidae). PLoS ONE, 12 (2), e0170224. https://doi.org/10.1371/journal.pone.0170224
  75. Smith, W.L., Ghedotti, M.J., Domínguez‑Domínguez, O., McMahan, C.D., Espinoza, E., Martin, R.P., Girard, M.G. & Davis, M.P. (2022) Investigations into the ancestry of the grape‑eye Seabass (Hemilutjanus macrophthalmos) reveal novel limits and relationships for the Acropomatiformes (Teleostei: Percomorpha). Neotropical Ichthyology, 20 (3), e210160. https://doi.org/10.1590/1982-0224-2021-0160
  76. Smith, W.L., Girard, M.G., Walker Jr., H.J. & Davis, M.P. (2024) The phylogeny of bristlemouths, lightfishes, and portholefishes with a revised family-level classification of the dragonfishes (Teleostei: Stomiiformes). National Oceanic and Atmospheric Administration Professional Papers National Marine Fisheries Service, 24 (13), 167–184. https://doi.org/10.7755/PP.24.13
  77. Smith, W.L., Stern, J.H., Girard, M.G. & Davis, M.P. (2016) Evolution of venomous cartilaginous and ray-finned fishes. Integrative and Comparative Biology, 56 (5), 950–961. https://doi.org/10.1093/icb/icw070
  78. Somiya, H. (1978) ‘Yellow lens’ eyes and luminous organs of Echiostoma barbatum (Stomiatoidei, Melanostomiatidae). Japanese Journal of Ichthyology, 25 (4), 269–272.
  79. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  80. Sutton, T.T. & Hopkins, T.L. (1996) Trophic ecology of the stomiid (Pisces: Stomiidae) fish assemblage of the eastern Gulf of Mexico: strategies, selectivity and impact of a top mesopelagic predator group. Marine Biology, 127, 179–192. https://doi.org/10.1007/BF00942102
  81. Tagliacollo, V.A. & Lanfear, R. (2018) Estimating improved partitioning schemes for ultraconserved elements. Molecular Biology and Evolution, 35 (7), 1798–1811. https://doi.org/10.1093/molbev/msy069
  82. Tchernavin, V.V. (1953) The feeding mechanisms of a deep-sea fish, Chauliodus sloani. British Museum (Natural History). Order of the Trustees of the British Museum, London, 101 pp.
  83. Weitzman, S.H. (1974) Osteology and evolutionary relationships of the Sternoptychidae, with a new classification of stomiatoid families. Bulletin of the American Museum of Natural History, 153 (3), 329–478.
  84. Widder, E.A., Latz, M.I., Herring, P.J. & Case, J.F. (1984) Far red bioluminescence from two deep-sea fishes. Science, 225 (4661), 512–514. https://doi.org/10.1126/science.225.4661.512

How to Cite

Dearmon, E.S., Smith, W.L. & Davis, M.P. (2026) Dragons of the deep (Stomiiformes: Stomiidae): Evolutionary relationships and taxonomy of the barbeled dragonfishes (Stomiinae) and viperfishes (Chauliodontinae). Zootaxa, 5759 (1), 1–25. https://doi.org/10.11646/zootaxa.5759.1.1