Skip to main content Skip to main navigation menu Skip to site footer
Type: Articles
Published: 2009-09-02
Page range: 43–55
Abstract views: 120
PDF downloaded: 78

Accelerating taxonomic discovery through automated character extraction

CSIRO Entomology, GPO Box 1700, Canberra, ACT, 2601, Australia
International Institute for Species Exploration, School of Life Sciences, Arizona State University, PO Box 876505, Tempe, Arizona, 85287-6505, USA
CSIRO Mathematical and Information Sciences, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia, Queensland, 4067, Australia
University of Queensland Insect Collection, School of Biological Science, University of Queensland, St Lucia, Queensland, 4072, Australia
Atlas of Living Australia, CSIRO Entomology, GPO Box 1700, Canberra, ACT, 2601, Australia
CSIRO Mathematical and Information Sciences, GPO Box 664, ACT, 2601, Australia
General taxonomy taxonomic impediment automated character extraction image analysis feature extraction pattern recognition

Abstract

This paper discusses the following key messages. Taxonomy is (and taxonomists are) more important than ever in times of global change. Taxonomic endeavour is not occurring fast enough: in 250 years since the creation of the Linnean Systema Naturae, only about 20% of Earth’s species have been named. We need fundamental changes to the taxonomic process and paradigm to increase taxonomic productivity by orders of magnitude. Currently, taxonomic productivity is limited principally by the rate at which we capture and manage morphological information to enable species discovery. Many recent (and welcomed) initiatives in managing and delivering biodiversity information and accelerating the taxonomic process do not address this bottleneck. Development of computational image analysis and feature extraction methods is a crucial missing capacity needed to enable taxonomists to overcome the taxonomic impediment in a meaningful time frame.

References

  1. Arbuckle, T. (2002) Automatic identification of bees’ species from images of their wings. In Proc. 9th Int. Workshop on Systems, Signals and Image Processing, pp. 509–511. Manchester, UMIST.

    Arbuckle, T., Schroder, S., Steinhage, V. & Wittmann, D. (2001) Biodiversity informatics in action: identification and monitoring of bee species using ABIS. In Proc. 15th Int. Symp. Informatics for Environmental Protection, ETH Zurich, 10–12 October 2001, vol. 1, pp. 425–430. Zurich: Metropolis.

    Besl, P.J. & McKay, N.D. (1992) A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239–256.

    Cheng, HD., Jiang, XH., Sun, Y. & Wang, JL. (2001) Color Image Segmentation: Advances and Prospects. Pattern recognition, 34(12), 2259–2281.

    Chow, S.K. & Chan, K.L. (2009) Reconstruction of photorealistic 3D model of ceramic artefacts for interactive virtual exhibition. Journal of Cultural Heritage, 10, 161–173.

    Daly, H.V., Hoelmer, K., Norman, P. & Allen, T. (1982) Computer-assisted measurement and identification of honeybees (Hymenoptera: Apidae). Annals of the Entomological Society of America, 75, 591-594.

    Dayrat, B. (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415.

    Deans A.R. & Kawada R. (2008) Alobevania, a new genus of neotropical ensign wasps (Hymenoptera: Evaniidae), with three new species: integrating taxonomy with the World Wide Web. Zootaxa, 1787, 28–44.

    Dietrich, CH. & Pooley, CD. (1994) Automated identification of leafhoppers (Homoptera: Cicadellidae: Draeculacephala Ball). Annals of the Entomological. Society of America, 87, 412–423.

    Drake, J. (2009) Robotic Automated Pest ID. In CPHST 2008 Annual Report. In prep. USDA-APHIS-PPQ-CPHST, Raleigh, North Carolina.

    Eshera, MA & Fu, KS. (1986) An Image Understanding System Using Attributed Symbolic Representation and Inexact Graph-Matching. IEEE Transactions on Pattern Analysis And Machine Intelligence, 8(5), 604-618.

    Evenhuis, N.L. (2007) Helping Solve the “Other” Taxonomic Impediment: Completing the Eight Steps to Total Enlightenment and Taxonomic Nirvana. Zootaxa, 1407, 3–12.

    Fedor, P., Vaňhara, J., Havel, J., Malenovsky, I. & Spellerberg, I. (2009) Artificial intelligence in pest insect monitoring. Systematic Entomology, 34, 398-400.

    Gaston KJ & O'Neill MA. (2004) Automated species identification: why not? Philosophical Transactions of The Royal Society Of London Series B-Biological Sciences, 359(1444), 655–667.

    Gauld, I. D., O’Neill, M. A. & Gaston, K. J. (2000) Driving Miss Daisy: the performance of an automated insect identification system. In Hymenoptera: evolution, biodiversity and biological control (ed. A. D. Austin & M. Dowton), pp. 303–312. Collingwood, VIC: CSIRO.

    Godfray, H.C.J. (2002a) Challenges for taxonomy. Nature, 417, 17–19.

    Godfray, H.C.J. (2002b) Towards taxonomy’s ‘glorious revolution’. Nature, 420, 461.

    Godfray, H.C.J. & Knapp, S. (2004) Introduction. [One contribution of 19 to a Theme Issue ‘Taxonomy for the twenty-first century’]. Philosophical Transactions of the Royal Society of London, B (2004), 359, 559–569.

    Gonzalez, R.C. & Woods, R.E. (2007) Digital Image Processing. 3rd edition. Harlow: Pearson/Prentice Hall. xxii, 954 pp.

    Hartley, C.J., Newcomb, R.D., Russell, R.J., Yong, C.G., Stevens, J.R., Yeates, D.K., La Salle, J. & Oakeshott, J.G. (2006) Amplification of DNA from preserved specimens shows blowflies were preadapted for the rapid evolution of insecticide resistance. Proceedings of the National Academy of Science, 103(23), 8757–8762.

    Hebert P.D.N., Cywinska A., Ball S.L. & deWaard, J.R. (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B, 270, 313–321.

    Hebert, P.D.N., & Gregory, T.R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54, 852–859.

    Houle, D., Mezey, J., Galpern, P. & Carter, A. (2003) Automated measurement of Drosophila wings. BMC Evolutionary Biology, 3:25, 1–13.

    International Commission on Zoological Nomenclature (2008) Proposed amendment of the International Code of Zoological Nomenclature to expand and refine methods of publication. Zootaxa, 1908, 57–67.

    Johnson, N.F., Masner, L., Musetti, L., van Noort, S., Rajmohana, K., Darling, D.C., Guidotti, A. & Polaszek, A. (2008) Revision of world species of the genus Heptascelio Kieffer (Hymenoptera: Platygastroidea, Platygastridae). Zootaxa, 1776, 1–51.

    Jonker, R., Groben, R., Tarran, G., Medlin, L., Wilkins, M., Garcia, L., Zabala, L. & Boddy, L. (2000) Automated identification and characterisation of microbial populations using flow cytometry: the AIMS project. Scientia Marina, 64, 225–234.

    Klinker, GJ., Shafer, SA. & Kanade, T. (1990) A Physical Approach to Color Image Understanding. International Journal of Computer Vision, 4(1), 7–38.

    Liu, B., Maier, D. & Manner, R. (2005) An efficient and accurate method for 3D-point reconstruction from multiple views. International Journal of Computer Vision, 65, 175–188.

    Lowe, DG. (2004) Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110.

    MacLeod, N. (ed) (2007) Automated Taxon Identification in Systematics: Theory, Approaches and Applications. Systematics Association Special Volume, 74. Boca Raton: Taylor & Francis.

    May, R.M. (2004) Tomorrow’s taxonomy: collecting new species in the field will remain the rate-limiting step. Philosophical Transactions of the Royal Society of London, B, (2004) 359, 733–734.

    O’Neill, M.A. (2007) DAISY: A practical computer-based tool for semi-automated species identification.,In. MacLeod, N. (ed) Automated Taxon Identification in Systematics: Theory, Approaches and Applications. Systematics Association Special Volume, 74, pp. 101-114. Boca Raton: Taylor & Francis.

    O’Neill, M. A., Gauld, I. D., Gaston, K. J. & Weeks, P. J. D. (2000) Daisy: an automated invertebrate identification system using holistic vision techniques. In Proceedings of the Inaugural Meeting BioNET-INTERNATIONAL Group for Computer-Aided Taxonomy (BIGCAT) (ed. D. Chesmore, L. Yorke, P. Bridge & S. Gallagher), pp. 13–22. Egham: BioNET-INTERNATIONAL Technical Secretariat.

    Pyle, R.L., Earle, J.L. & Greene, B.D. (2008) Five new species of the damselfish genus Chromis (Perciformes: Labroidei: Pomacentridae) from deep coral reefs in the tropical western Pacific. Zootaxa, 1671, 3–31.

    Reed, TR. & Hans du Buf, JM. (1993) A Review of Recent Texture Segmentation And Feature-Extraction Techniques. CVGIP: Image Understanding, 57(3), 359–372.

    Rohlf, FJ. & Bookstein, FL. (2003) Computing the Uniform Component of Shape Variation. Systematic Biology, 52, 66–69.

    Russell, K.N, Do, M.T., Huff, J.C. & Platnick, N.I. (2007) Introducing SPIDA-Web: wavelets, neural networks and internet accessibility in an image-based automated identification system. In. MacLeod, N. (ed) Automated Taxon Identification in Systematics: Theory, Approaches and Applications. Systematics Association Special Volume, 74, pp. 131-152. Boca Raton: Taylor & Francis.

    SOS Report (2009). State of Observed Species Report 2009. International Institute for Species Exploration, Arizona State University, in partnership with International Commission on Zoological Nomenclature, International Plant Names Index, Thomson Reuters and International Journal of Systematic and Evolutionary Microbiology. 10 pp. http://species.asu.edu/files/IISE_SOS_2009.pdf

    Stork, N. E. (1999) The magnitude of biodiversity and its decline. In J. Cracraft & F. Grifo (eds) The Living Planet in Crisis: Biodiversity, Science and Policy, pp 3–32. Columbia University Press, New York.

    Suarez, A.V. & Tsutsui, N.D. (2004) The value of museum collections for research and society. BioScience, 54, 66–74.

    Tautz D., Arctander P, Minelli A, Thomas RH, Vogler AP. (2003) A plea for DNA taxonomy. Trends in Ecology and Evolution, 18, 70–74.

    Tofilski, A. (2004) DrawWing, a program for numerical description of insect wings. Journal of Insect Science, 17, 1–5.

    Walters, T., Scher, J. & Drake, J. (2008) Identification Technology Program in Review. In CPHST Laboratory Fort Collins: 2007 Annual Report, pgs. 30-37. USDA-APHIS-PPQ-CPHST, Fort Collins, Colorado.

    Wheeler Q.D., Raven, P.H. & Wilson, E.O. (2004) Taxonomy: impediment or expedient? Science, 303, 285.

    Wheeler, Q.D. (2007) Invertebrate systematics or spineless taxonomy? Zootaxa, 1668, 11–18.

    Wheeler, Q.D. (ed.) (2008) The New Taxonomy. The Systematics Association Special Volumes Series. 76. Boca Raton : CRC Press

    Will, K.W., Mishler, B.D. & Wheeler, Q.D. (2005) The Perils of DNA Barcoding and the Need for Integrative Taxonomy. Systematic Biology, 54, 844–851.

    Wilson, E.O. (1985) The biodiversity crisis: a challenge to science. Issues in Science & Technology, 20–29.

    Wilson, E.O. (2004) Taxonomy as a fundamental discipline. Philosophical Transactions of the Royal Society of London, B (2004), 359, 739.

    Winterton S.L. (2009) Revision of the stiletto fly genus Neodialineura Mann (Diptera: Therevidae): an empirical example of cybertaxonomy. Zootaxa, 2157, 1–33.

    Zhang, Z.-Q. (2006) The making of a mega-journal in taxonomy. Zootaxa, 1385, 67–68.

    Zhang, Z.-Q. (2008a) Zoological taxonomy at 250: showcasing species descriptions in the cyber era. Zootaxa, 1671, 1–2

    Zhang, Z.-Q. (2008b) Contributing to the progress of descriptive taxonomy. Zootaxa, 1968, 65–68.