Skip to main content Skip to main navigation menu Skip to site footer
Type: Articles
Published: 2010-05-12
Page range: 18–30
Abstract views: 66
PDF downloaded: 4

Phylogeny and biogeography of the Enhydris clade (Serpentes: Homalopsidae)

Department of Biology, Rivers Institute, Hanover College, Hanover, IN 47243 Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605
Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605 Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697
Department of Biology, Rivers Institute, Hanover College, Hanover, IN 47243 Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605
Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605
Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605
Reptilia Southeast Asia Thailand water snakes mud snakes mitochondrial DNA

Abstract

Previous molecular phylogenetic hypotheses for the Homalopsidae, the Oriental-Australian Rear-fanged Water Snakes indicate that Enhydris, the most speciose genus in the Homalopsidae (22 of 37 species), is polyphyletic and may consist of five separate lineages. We expand on earlier phylogenetic hypotheses using three mitochondrial fragments and one nuclear gene, previously shown to be rapidly evolving in snakes, to determine relationships among six closely related species: Enhydris enhydris, E. subtaeniata, E. chinensis, E. innominata, E. jagorii, and E. longicauda. Four of these species (E. subtaeniata, E. innominata, E. jagorii, and E. longicauda) are restricted to river basins in Indochina, while E. chinensis is found in southern China and E. enhydris is widely distributed from India across Southeast Asia. Our phylogenetic analyses indicate that these species are monophyletic and we recognize this clade as the Enhydris clade sensu stricto for nomenclatural reasons. Our analysis shows that E. chinensis is sister-species to a well-supported clade comprising the remaining species of the Enhydris clade (mean p distance between E. chinensis and other in-group taxa was 13.1%, range: 12.7-13.4%). Enhydris innominata, E. longicauda and E. jagorii also formed a strongly supported clade with very low interspecific p distances (mean 0.28%, range: 0–0.46%). We were unable to resolve relationships between E. enhydris and E. subtaeniata (mean divergence of 9.4%, range: 9.2-9.7%), and between these two species and E. innominata, E. longicauda and E. jagorii. We summarize classical morphological (scalation and coloration) characteristics of these species in the context of the molecular phylogeny. The Enhydris clade comprises a substantial portion of the vertebrate biomass of Southeast Asia and we discuss aspects of its biogeography, morphology and systematics.

References

  1. Alfaro, M.E., Karns, D.R., Voris, H.K., Abernathy, E. & Sellins, S.L. (2004) Phylogeny of Cerberus (Serpentes: Homalopsinae) and phylogeography of Cerberus rynchops: Diversification of a coastal marine snake in Southeast Asia. Journal of Biogeography, 31(8), 1277–1292.

    Alfaro, M.E., Karns, D.R., Voris, H.K., Brock, C.D. & Stuart, B.L. (2008) Phylogeny, evolutionary history, and biogeography of Oriental-Australian rear-fanged water (Colubroidea: Homalopsidae) inferred from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 46, 576–593.

    Barbour, T. (1912) A contribution to the zoogeography of the East Indian Islands. Memoires of the Museum of Comparative Zoology, 44, 1–203.

    Burbrink, F.T., Lawson, R. & Slowinski, J.B. (2000) Molecular phylogeography of the North American rat snake (Elaphe obsoleta): a critique of the subspecies concept. Evolution, 54, 2107–2114.

    Farris, J.S., Kallersjo, M., Kluge, A.G. & Bult, C. (1995) Testing significance of incongruence. Cladistics, 10, 315–319.

    Forstner, M.R.J., Davis, S.K. & Are´valo, E. (1995) Support for the hypothesis of anguimorph ancestry for the suborder Serpentes from phylogenetic analysis of mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 4, 93–102.

    Fry, B.G., Vidal, N., Norman, J.A., Vonk, F.J., Scheib, H., Romjan, S.F.R., Kuruppu, S., Fung, K., Hedges, S.B., Richardson, M.K., Hodgson, W.C., Ignjatovic, V., Summerhayes, R. & Kochva, E. (2005) Early evolution of the venom system in lizards and snakes. Nature, 439(7076), 584–588.

    Glaubrecht, M. & Köhler, F. (2004) Radiating in a river: systematic, molecular genetics and morphological differentiation of viviparous freshwater gastropods endemic to the Kaek River, central Thailand (Cerithioidea, Pachychilidae). Biological Journal of the Linnean Society, 82, 275–311.

    Gyi, K.K. (1970) A revision of colubrid snakes of the subfamily Homalopsinae. Museum of Natural History, University of Kansas Publications, Lawrence, 223 pp.

    Hall, R. & Holloway J.D. (1998) Biogeography and Geological Evolution of SE Asia. Backhuys Publishers, Leiden, pp. ii–417.

    Inger, R.F. & Voris, H.K. (2001) The biogeographical relations of the frogs and snakes of Sundaland. Journal of Biogeography, 28(7), 863–891.

    Karns, D.R., Murphy, J.C. & Voris, H.K. (2010) Semi-aquatic Snake Communities of the Central Plain Region of Thailand. Tropical Natural History, 10(1), 1–25.

    Karns, D.R., Murphy, J.C., Voris, H.K. & Suddeth, J.S. (2005) Comparison of semiaquatic snake communities asociated with the Khorat Basin, Thailand. The Natural History Journal of Chulalongkorn University, 5(2), 73–90.

    Kelly, C.M.R., Barker, N.P. & Villet, M.H. (2003) Phylogenetics of advanced snakes (Caenopidia) based on four mitochondrial genes. Systematic Biology, 52(4), 439–459.

    Kocher, T.D., Thomas, W.K., Meyer, A., Edwards, S.V., Paabo, S., Villablanca, F.X. & Wilson, A.C. (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings National Academy of Sciences, USA, 86, 6196–6200.

    Lawson, R., Slowinski, J.B., Crother, B.I. & Burbrink, F.T. (2005) Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 37,581–601.

    Lukoschek, V., Waycott, M. & Marsh, H. (2007) Phylogeographic structure of the olive sea snake, Aipysurus laevis (Hydrophiinae) indicates recent Pleistocene range expansion but low contemporary gene flow. Molecular Ecology, 16, 3406–3422.

    Murphy, J.C. (2007) Homalopsid Snakes: Evolution in the Mud. Krieger Publishing Company, Malabar, Florida, 249 pp.

    Murphy, J.C. & Voris, H.K. (2005) A new Thai Enhydris (Serpentes: Colubridae: Homalopsinae). Raffles Bulletin of Zoology, 53(1), 143–147.

    Murphy, J.C., Voris, H.K. & Auliya, M. (2005) A new species of Enhydris (Serpentes: Colubridae: Homalopsinae) from the Kapuas river system, West Kalimantan, Indonesia. Raffles Bulletin of Zoology, 53(2), 115–119.

    Mushinskhy, H.R. (1987) Foraging Ecology. Pages 302–334 In, Seigel, R.A., Collins, J.T. & Novak, S.S. (Eds.), Snakes, Ecology and Evolutionary Biology, Macmillian Publishing Company, New York, 529 pp.

    Nylander, J.A.A., Ronquist, F., Huelsenbeck, J.P. & Nieves-Aldrey, J.L. (2004) Bayesian phylogenetic analysis of combined data. Systematic Biology, 53, 47–67.

    Posada, D. & Crandall, K.A. (1998) MODELTEST: testing the model of DNA substitutions. Bioinformatics, 14, 817–818.

    Pough, F.H. & Groves, J.D. (1983) Specializations of the body form and food habits of snakes. American Zoologist, 23, 443–454.

    Rainboth, W.J. (1996) Fishes of the Cambodian Mekong. Food and Agriculture Organization of the United Nations. Rome, 265 pp.

    Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Saint Girons, H. (1971) Notes sur les Enhydris du Groupe innominata: smithi, et longicauda (Serpentes, Homalopsinae). Société du Science Naturelles Physiques du Maroc, 51, 221–234.

    Saint Girons, H. (1972). Les Serpents du Cambodge. Mémoires du Muséum Natlional d'Histoire Naturelle, Paris. Nou. Ser. A. Zoologie, 74, 1–170.

    Sanders, K.L. & Lee, M.S.Y. (2008) Molecular evidence for a rapid late-Miocene radiation of Australasian venomous snakes (Elapidae, Colubroidea). Molecular Phylogenetics and Evolution, 46, 1180–1188.

    Savitsky, A.H. (1983) Coadapted character complexes among snakes: fossoriality, piscivory, and durophagy. American Zoologist, 23, 397–409.

    Smith, M.A. (1943) The Fauna of British India, Ceylon and Burma, including the whole of the Indo-chinese sub-region. Reptilia and Amphibia. Volume 3. Serpentes. Taylor & Francis, London, 583 pp.

    Sonni, C.S. & Latereille, P.A. (1801) Historie Naturelle das Reptiles. Seconde partie. Serpens. Tome 3. Deterville, Paris, 335 pp.

    Swofford, D. (2000) PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sinauer Associates, Sunderland, Massachusetts.

    Townsend, T.M., Alegre, R.E., Kelly, S T., Wiens, J J. & Reeder, T.W. (2008) Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Molecular Phylogenetics and Evolution, 47, 129–142.

    Vidal, N. & Hedges, S.B. (2005) The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes." Comptes Rendus Biologies, 328, 1000–1008.

    Vidal, N. & Hedges, S.B. (2009) The molecular evolutionary tree of lizards, snakes, and amphisbaenians. Comptes Rendus Biologies, 332, 129–139.

    Vidal, N., Delmas, A., David, P., Cruaud, C., Couloux, A. & Hedges, S.B. (2007) The phylogeny and classification of snakes inferred from seven nuclear protein-coding genes. Comptes Rendus Biologies, 330, 182–187.

    Vidal, N., Rage, J., Couloux, A. & Hedges, S.B. (2009) Snakes (Serpentes). In: Hedges, S.B. & Kumar, S. (Eds), The Timetree of Life Chronology. Oxford University Press, Oxford, U.K., 572 pp.

    Voris, H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems, time durations. Journal of Biogeography, 27(4), 1153–1167.

    Voris, H.K., Alfaro, M.E., Karns, D.R., Starnes, G.L., Thompson, E. & Murphy, J.C. (2002) Phylogenetic relationships of the Australasian rear-fanged snakes based on mitochondrial DNA sequences. Copeia, 2002(4), 906–915.

    Voris, H.K. & Murphy, J.C. (2002) The prey and predators of homalopsine snakes. Journal of Natural History, 36, 1621–1632.

    Waters, J.M., Craw, D., Youngson, J.H. & Wallis, G.P. (2001) Genes meet geology: fish phylogeographic pattern reflects ancient, rather than modern, drainage connections. Evolution, 55(9), 1844–1851.

    Wiens, J.J. (2008) Systematics and herpetology in the age of genomics. BioScience, 58(4), 297–307.

    Woodruff, D.S. (2003) Neogene marine transgressions, paleogeography and biogeographic transitions on the Thai-Malay Peninsula. Journal of Biogeography, 30, 551–567.

    Wüster W., Crookes, S., Ineich, I., Mane´, Y., Pook, C.E., Trape, J. & Broadley, D.G. (2007) The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Molecular Phylogenetics and Evolution, 45, 437–453.