Skip to main content Skip to main navigation menu Skip to site footer
Type: Articles
Published: 2013-03-05
Page range: 163–178
Abstract views: 48
PDF downloaded: 2

A new species of Andean poison frog, Andinobates (Anura: Dendrobatidae), from the northwestern Andes of Colombia

Department of Biological Sciences, Universidad de los Andes, AA 4976. Bogotá, Colombia
Department of Biological Sciences, Universidad de los Andes, AA 4976. Bogotá, Colombia
Department of Biology, Universidad del Tolima, Ibagué, Colombia
Department of Biological Sciences, Universidad de los Andes, AA 4976. Bogotá, Colombia
Neotropical Conservation Foundation. Washington, DC, USA
Fundación THC, Calle 17A No. 121-11. Cali, Colombia
4Fundación THC, Calle 17A No. 121-11. Cali, Colombia
Amphibia Andinobates cassidyhornae sp. nov. dendrobatid frogs poison frogs phylogenetics distribution conservation Colombia Andes

Abstract

The poison frogs of the Colombian Andes, Pacific lowlands and Panamahave been recently recognized as a new, monophyletic and well-supported genus: Andinobates. The species richness and distribution within Andinobates remain poorly understood due to the paucity of geographic, genetic and phenotypic data. Here we use a combination of molecular, bioacoustic and morphometric evidence to describe a new species of Andean poison frog: Andinobates cassidyhornae sp. nov. from the high elevation cloud forests of the Colombian Cordillera Occidental, in the northwestern Andes. The new species is associated to the bombetes group and characterized by a unique combination of ventral and dorsal color patterns. Data on 1119 bp from two mitochondrial markers allowed us to reject the null hypotheses that A. cassidyhornae sp. nov. is part of the phenotypically similar and geographically less distant species: A. opisthomelas, A. virolinensis or A. bombetes. The best available phylogenetic trees and the genetic distance to other Andinobates species further support this decision. Altogether, the advertisement call parameters unambiguously separated A. cassidyhornae sp. nov. calls from the calls of the three closest species. The new species adds to a poorly known and highly endangered genus of poison frogs that requires further studies and urgent conservation measures.

References

  1. Amézquita, A., Hödl, W., Lima, A.P., Castellanos, L., Erdtmann, L. & de Araújo, M.C. (2006) Masking interference and the evolution of the acoustic communication system in the Amazonian dendrobatid frog Allobates femoralis. Evolution, 60, 1874–1887.

    Amézquita, A., Flechas, S.V., Lima, A.P., Gasser, H. & Hödl, W. (2011) Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs. Proceedings of the National Academy of Sciences, USA, 108, 17058–17063.
    http://dx.doi.org/10.1073/pnas.1104773108

    Bernal, M.H., Luna-Mora, V.F., Gallego, O. & Quevedo, A. (2007) A new species of poison frog (Amphibia: Dendrobatidae) from the Andean mountains of Tolima, Colombia. Zootaxa, 1638, 59–68.

    Boulenger, G.A. (1899) Descriptions of new batrachians in the collection of the British Museum (Natural History). Annals and Magazine of Natural History, 3, 273–277. http://dx.doi.org/10.1080/00222939908678122

    Brown, J.L., Twomey, E., Amézquita, A., Barbosa De Souza, M., Caldwell, J.P., Lötters, S., Von May, R., Melo-Sampaio, P.R., Mejía-Vargas, D., Perez-Peña, P., Pepper, M., Poelman, E.H., Sanchez-Rodriguez, M. & Summers, K. (2011) A taxonomic revision of the Neotropical poison frog genus Ranitomeya (Amphibia: Dendrobatidae). Zootaxa, 3083, 1–120.

    Capranica, R.R. & Moffat, J.M. (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert J.P. & Capranica R.R. (Eds.), Advances in Vertebrate Neuroethology, Ingle D, Plenum, New York, pp. 701–730. http://dx.doi.org/10.1007/978-1-4684-4412-4_36

    Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Kearse, M., Moir, R., Stones-Havas, S., Sturrick, T., Thierer, T. & Wilson, A. (2010) Geneious v5.1. Available from http://www.geneious.com/ (accessed 26/08/2012).

    Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. http://dx.doi.org/10.1093/nar/gkh340

    Erdtmann, L. & Amézquita, A. (2009) Differential evolution of advertisement call traits in dart-poison frogs (Anura: Dendrobatidae). Ethology, 115, 801–811. http://dx.doi.org/10.1111/j.1439-0310.2009.01673.x

    Felsenstein, J. (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376. http://dx.doi.org/10.1007/BF01734359

    Grant T., Frost D., Caldwell J., Gagliardo R., Haddad C.F., Kok P.J., Means D.B., Noonan B.P., Schargel W.E. & Wheeler W.C. (2006) Phylogenetic systematics of dart-poison frogs and their relatives (Amphibia: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299, 1–262.
    http://dx.doi.org/10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2

    Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. http://dx.doi.org/10.1007/BF01731581

    Lanfear, R., Calcott, B., Ho, S.Y.W. & Guidon, S. (2012) PartitionFinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701.
    http://dx.doi.org/10.1093/molbev/mss020

    Madisson, W. & Madisson, D. (2011) Mesquite: A Modular System for Evolutionary Analysis, ver. 2.75. http://mesquiteproject.org (accessed 26/08/2012).

    McDiarmid, R.W. (1994) Preparing amphibians as scientific specimens. In: Heyer, W.R., Donnelly, M.A., McDiarmid, R.W., Hayek, L-A.C. & Foster, M.S. (Eds.), Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians. Smithsonian Institution Press. Washington, pp. 289–297.

    Myers, C.W. & Daly, J. (1976) A new species of poison frog (Dendrobates) from Andean Ecuador, including an analysis of its skin toxins. Occasional Papers of the Museum of Natural History The University of Kansas Lawrence, Kansas, 59, 1–12.

    Myers, C.W. & Daly, J. (1980) Taxonomy and ecology of Dendrobates bombetes, a new Andean poison frog with new skin toxins. American Museum Novitates, 2694, 1–23.

    Palumbi, S., Martin, A., Romano, S., McMillan, O., Stice, L. & Gabowski, G. (1991) The Simple Fool's Guide to PCR. Deppartment of Zoology, University of Hawaii, Hawaii, 45 pp.

    R Development Core Team. (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Austria.

    Rambaut, A. & Drummond, A. (2007) Tracer v1.5. Available from http://beast.bio.ed.ac.uk/Tracer (accessed 26/08/2012)

    Rannala, B. & Yang, Z. (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304–311. http://dx.doi.org/10.1007/BF02338839

    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. http://dx.doi.org/10.1093/bioinformatics/btg180

    Rueda-Almonacid, J.V., Rada, M., Sánchez, S., Velásquez-Alvarez, A. & Quevedo, A. (2006) Two new and exceptional poison dart frogs of the genus Dendrobates (Anura: Dendrobatidae) from the northeastern flank of the Cordillera Central of Colombia. Zootaxa, 1259, 39–54.

    Ruiz-Carranza, P.M., & Ramírez-Pinilla, M.P. (1992) Una nueva especie de Myniobates (Anura: Dendrobatidae) de Colombia. Lozania, 61, 1–16.

    Santos, J.C. & Cannatella, D.C. (2011) Phenotypic integration emerges from aposematism and scale in poison frogs. Proceedings of the National Academy of Sciences, 108, 6175–6180. http://dx.doi.org/10.1073/pnas.1010952108

    Santos J.C., Coloma, L.A., Summers, K., Caldwell, J.P., Ree, R. & Cannatella, D.C. (2009) Amazonian amphibian diversity is primarily derived from late miocene Andean lineages. PLoS Biology, 7, 3. http://dx.doi.org/10.1371/journal.pbio.1000056

    Schliep, K.P. (2011) Phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592–593. http://dx.doi.org/10.1093/bioinformatics/btq706

    Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026201

    Silverstone P.A. (1975) A revision of the poison-arrow frogs of the genus Dendrobates Wagler. Natural History Museum of Los Angeles County, Science Bulletin, 21, 1–55.

    Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. http://dx.doi.org/10.1093/bioinformatics/btl446

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. http://dx.doi.org/10.1093/molbev/msr121

    Valderrama-Vernaza M., Ramírez-Pinilla M.P. & Serrano-Cardozo V.H. (2009) Diet of the Andean frog Ranitomeya virolinensis (Athesphatanura: Dendrobatidae). Journal of Herpetology, 43, 114–123. http://dx.doi.org/10.1670/07-247R1.1