Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2016-06-24
Page range: 579–590
Abstract views: 62
PDF downloaded: 1

Molecular analysis of six Rhynchospio Hartman, 1936 species (Annelida: Spionidae) with comments on the evolution of brooding within the group

A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia.
A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia. Far Eastern Federal University, 8 Sukhanov Street, Vladivostok 690950, Russia.
A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 17 Palchevsky Street, Vladivostok 690041, Russia. Far Eastern Federal University, 8 Sukhanov Street, Vladivostok 690950, Russia.
University of Southern California, Los Angeles, California, USA. St. Petersburg State Polytechnical University, St. Petersburg, Russia
Annelida Polychaete distribution taxonomy cryptic species gamete morphology reproduction brooding larval development evolution

Abstract

Rhynchospio Hartman, 1936 is a small group of spionid polychaetes currently comprising ten described species distributed mainly in the Pacific. Five species examined to date are hermaphrodites producing spermatozoa with long nuclei, oocytes with thin and smooth envelopes, and dorsally brooding their offspring. Since our first molecular analysis of four Rhynchospio species, we have collected additional material from Northern Territory, Australia, and Oregon, USA. Herein, we describe the gamete and adult morphology of the newly collected material and use molecular analyses to provide new insight on the phylogenetic relationships of six Rhynchospio species. Adults of R. cf. foliosa from Oregon are hermaphrodites, but in contrast to other Rhynchospio, they produce spermatozoa with short nuclei (ect-aquasperm), oocytes with thick vesiculate envelopes, and likely have a holopelagic larval development. Analysis of four gene fragments, comprising mitochondrial 16S rDNA, and nuclear 18S, 28S rDNA, and Histone 3 (2516 bp in total) showed Rhynchospio to be a monophyletic group, with R. cf. foliosa being a distant sister to the five other species. Rhynchospio cf. foliosa was closer to M. arctia having ect-aquasperm and vesiculate thick-envelop oocytes (p = 14.40%) than to Spioninae members B. proboscidea and P. elegans, having introsperm and oocytes with thin and smooth envelopes (p = 15.39 and 16.54%, respectively). We hypothesize that brooding might have evolved from free-spawning inside the Rhynchospio clade, but this hypothesis should be tested in a future analysis.

 

References

  1. Blake, J.A. (1996) Family Spionidae Grube, 1850. Including a review of the genera and species from California and a revision of the genus Polydora Bosc, 1802. In: Blake, J.A., Hilbig, B. & Scott, P.H. (Eds.), Taxonomic Atlas of the Benthic Fauna of the Santa Maria Basin and Western Santa Barbara Channel. Volume 6. The Annelida Part 3 - Polychaeta: Orbiniidae to Cossuridae. Santa Barbara Museum of Natural History, Santa Barbara, California, pp. 81–223.

    Blake, J.A. (2006) Spionida. In: Rouse, G. & Pleijel, F. (Eds.), Reproductive Biology and Phylogeny of Annelida. Vol. 4 of Series: Reproductive Biology and Phylogeny. Science Publisher, Enfield, NH, pp. 565–638.

    Blake, J.A. & Arnofsky, P.L. (1999) Reproduction and larval development of the spioniform Polychaeta with application to systematics and phylogeny. Hydrobiologia, 402, 57–106.

    http://dx.doi.org/10.1023/A:1003784324125

    Blake, J.A. & Kudenov, J.D. (1978) The Spionidae (Polychaeta) from southeastern Australia and adjacent areas with a revision of the genera. Memoirs of the National Museum of Victoria, 39, 171–280.

    Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17 (4), 540–552.
    http://dx.doi.org/10.1093/oxfordjournals.molbev.a026334

    Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9 (8), 772.
    http://dx.doi.org/10.1038/nmeth.2109

    Day, J.H. (1967) A monograph on the Polychaeta of Southern Africa. Part 2. Sedentaria. London, The British Museum (Natural History), i–xvii, 459–878 pp.

    Fauchald, K. (1977) The polychaete worms. Definitions and keys to the orders, families and genera. Natural History Museum of Los Angeles County, Science Series, 28, 1–188.

    Foster, N.M. (1971) Spionidae (Polychaeta) of the Gulf of Mexico and the Caribbean Sea. Studies on the fauna of Curaçao and other Caribbean Islands, 36 (129), 1–183.

    Hannerz, L. (1956) Larval development of the polychaete families Spionidae Sars, Disomidae Mesnil, and Poecilochaetidae n. fam. in the Gullmar Fjord (Sweden). Zoologiska bidrag från Uppsala, 31, 1–204.

    Hartman, O. (1936) New species of Spionidae (Annelida Polychaeta) from the coast of California. University of California Publications in Zoology, 41 (6), 45–52.

    Hartman, O. (1959) Catalogue of the Polychaetous Annelids of the World. Allan Hancock Foundation Publications, Occasional Papers, 23, 1–628.

    Hartman, O. (1969) Atlas of the sedentariate polychaetous annelids from California. Los Angeles, California, Allan Hancock Foundation, 812 pp.

    Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17 (8), 754–755.

    http://dx.doi.org/10.1093/bioinformatics/17.8.754

    Imajima, M. (1991) Spionidae (Annelida, Polychaeta) from Japan. VI. The genera Malacoceros and Rhynchospio. Bulletin of the National Science Museum, Tokyo, Series A (Zoology), 17 (1), 5–17.

    Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010. IEEE, New Orleans, LA, pp. 1–8.
    http://dx.doi.org/10.1109/GCE.2010.5676129

    Pettibone, M.H. (1963) Revision of some genera of polychaete worms of the family Spionidae, including the description of a new species of Scolelepis. Proceedings of the Biological Society of Washington, 76, 89–104.

    Radashevsky, V.I. (2007a) Morphology and biology of a new Rhynchospio species (Polychaeta: Spionidae) from the South China Sea, Vietnam, with the review of Rhynchospio taxa. Journal of Natural History, London, 41 (17), 985–997.

    http://dx.doi.org/10.1080/00222930701376717

    Radashevsky, V.I. (2007b) Evolution of reproduction in Spionidae (Annelida). In: 9th International Polychaete Conference. Abstracts. August 12–18, 2007. The University of Maine, Portland, Maine, USA, p. 68.

    Radashevsky, V.I. (2015) Spionidae (Annelida) from Lizard Island, Great Barrier Reef, Australia: the genera Aonides, Dipolydora, Polydorella, Prionospio, Pseudopolydora, Rhynchospio, and Tripolydora. Zootaxa, 4019 (1), 635–694.

    http://dx.doi.org/10.11646/zootaxa.4019.1.22

    Radashevsky, V.I., Neretina, T.V., Pankova, V.V., Tzetlin, A.B. & Choi, J.-W. (2014) Molecular identity, morphology and taxonomy of the Rhynchospio glutaea complex with a key to Rhynchospio species (Annelida, Spionidae). Systematics and Biodiversity, 12 (4), 424–433.

    http://dx.doi.org/10.1080/14772000.2014.941039

    Radashevsky, V.I., Pankova, V.V., Neretina, T.V., Stupnikova, A.N. & Tzetlin, A.B. (2016) Molecular analysis of the Pygospio elegans group of species (Annelida: Spionidae). Zootaxa, 4083 (2), 239–250.

    http://dx.doi.org/10.11646/zootaxa.4083.2.4

    Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19 (12), 1572–1574.

    http://dx.doi.org/10.1093/bioinformatics/btg180

    Sikorski, A.V. (1994) Malacoceros (Polychaeta, Spionidae) in the Arctic Ocean. Zoologicheskii Zhurnal, 73 (5), 21–35. [in Russian with English Summary]

    Söderström, A. (1920) Studien über die Polychätenfamilie Spionidae. Inaugural-Dissertation. Uppsala, Almquist & Wicksells, 286 pp.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. & Kumar, S. (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28 (10), 2731–2739.

    http://dx.doi.org/10.1093/molbev/msr121

    Xia, X. & Lemey, P. (2009) Assessing substitution saturation with DAMBE In: Lemey, P., Salemi, M. & Vandamme, A.-M. (Eds.), The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge University Press, Cambridge, pp. 611–626.

    Xia, X., Xie, Z., Salemi, M., Chen, L. & Wang, Y. (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution, 26 (1), 1–7.

    http://dx.doi.org/10.1016/s1055-7903(02)00326-3