Abstract
Limited molecular sequence data are available for selachinematid nematodes, with little or no data from the Southern Hemisphere or habitats beyond the subtidal zone. Here, we provide molecular sequence data for the small subunit (SSU) 18S rDNA gene and D2–D3 region of large subunit (LSU) 28S rDNA gene of three new (Cheironchus haurakiensis n. sp., Halichoanolaimus anisospermus n. sp., and Bendiella longicauda n. sp.) and two known selachinematid species (Pseudocheironchus ingluviosus Leduc, 2013 and Synonchiella rotundicauda Leduc, 2013) from shelf and upper slope environments off northeastern New Zealand. Cheironchus haurakiensis n. sp. is characterised by having a multispiral amphideal fovea with five turns, lateroventral mandibles with central arm curved distally and bearing 4–5 pointed projections, and each palm bearing 4–5 pointed projections, ten precloacal supplements in a 1 + 9 arrangement, spicules 78 µm long, and blunt conical tail with thickened cuticle. Halichoanolaimus anisospermus n. sp. is characterised by having an amphideal fovea with 5-6 turns, anterior portion of buccal cavity with cuticularised rhabdions terminating in three sets of seven pairs of teeth (denticles), with the central pair of each set positioned above the other six, dimorphism in size of sperm cells between anterior and posterior testes, gubernaculum consisting of two detached lateral pieces (crurae) tapering distally, three small precloacal supplements consisting of slightly thickened and raised cuticle, and a conicocylindrical tail with conical portion 32–38% of total tail length. Bendiella longicauda n. sp. is characterised by having two dorsosublateral rows of pores from midbody to level of cloaca, amphideal fovea with 4.5 turns, posterior rhabdions with numerous small denticles, spicules 2.1 cloacal body diameters long, a conicocylindrical tail 13.3 cloacal body diameters long and with conical portion 8% of tail length. Preliminary phylogenetic analyses for the family Selachinematidae do not provide evidence of clustering according to depth (intertidal/subtidal vs shelf/upper slope) or geographical location (New Zealand vs Northern Hemisphere). The number of available Selachinematidae sequences, however, remains limited and comprehensive analyses based on larger number of sequences will be necessary to provide more solid conclusions.
References
Alongi, D.M. & Cristoffersen, P. (1992) Benthic infauna and organism-sediment relations in a shallow, tropical coastal area: influence of outwelled mangrove detritus and physical disturbance. Marine Ecology Progress Series, 81, 229–245.
Armenteros, M., Rojas-Corzo, A., Ruiz-Abierno, A., Derycke, S., Backeljau, T. & Decraemer, W. (2014) Systematics and DNA barcoding of free-living marine nematodes with emphasis on tropical desmodorids using nuclear SSU rDNA and mitochondrial COI sequences. Nematology, 16, 979–989.
http://dx.doi.org/10.1163/15685411-00002824Castillo-Fernandez, D. & Decraemer, W. (1993) Cheironchus paravorax n. sp. and Cheironchus vorax Cobb, 1917 from the Campeche Sound, an oil producing zone in the Gulf of mexico (Nemata: Selachinematidae). Bulletin de l”Institute Royal des Sciences Naturelles de Belgique (Biologie), 63, 55–64.
Cobb, N.A. (1917) Notes on Nemas. Contribution to a Science of Nematology, 5, 117–128.
Coomans, A. (1979) A proposal for a more precise terminology of the body regions in the nematode. Annales de la Société Royale Zoologique de Belgique, 108, 115–117.
De Ley, P., De Ley, I.T., Morris, K., Abebe, E., Mundo-Campo, M., Yoder, M., Heras, J., Waumann, D., Rocha-Olivares, A., Burr, A.H.J., Baldwin, J.G. & Thomas, W.K. (2005) An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B, 360, 1945–1958.
http://dx.doi.org/10.1098/rstb.2005.1726Fisher, R. & Sheaves, M.J. (2003) Community structure and spatial variability of marine nematodes in tropical Australian pioneer seagrass meadows. Hydrobiologia, 495, 143–158.
Fu, S.J., Cai, L.Z., Yang, J., Zhou, X.P., Peng, X. & Cao, J. (2012) Spatial and seasonal variations of subtidal free-living nematode assemblages in the northern Beibu Gulf, South China Sea. Journal of the Marine Biological Association of the United Kingdom 92, 255–264.
Holterman, M., Van Der Wurff, A., Van Den Elsen, S., Van Megen, H., Bongers, T., Holovachov, O., Bakker, J. & Helder, J. (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution, 13, 1792–1800.
http://dx.doi.org/10.1093/molbev/msl044de Jesùs-Navarrete, A. (2007) Littoral free living nematode fauna of Socorro Island, Colima, Mexico. Hidrobiológica, 17, 61–66.
Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., Mcwilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.
http://dx.doi.org/10.1093/bioinformatics/btm404Leduc, D. (2013) Two new genera and five new species of Selachinematidae (Nematoda, Chromadorida) from the continental slope of New Zealand. European Journal of Taxonomy, 63, 1–32.
http://dx.doi.org/10.5852/ejt.2013.63Leduc, D. & Zhao, Z. (2015) Latronema whataitai sp. n. (Nematoda: Selachinematidae) from intertidal sediments of New Zealand, with notes on relationships within the family based on preliminary 18S and D2–D3 phylogenetic analyses. Nematology, 17, 941−952.
Miljutin, D.M., Gad, G., Miljutina, M.M., Mokievsky, V.O., Fonseca-Genevois, V. & Esteves, A. (2010) The state of knowledge on deep-sea nematode taxonomy: how many valid species are known down there? Marine Biodiversity, 40, 143−159.
Nunn, G.B. (1992) Nematode molecular evolution. Ph.D. Thesis, University of Nottingham, 228 pp.
Pavlyuk, O. & Trebukhova, Y. (2007) Community structure of free-living marine nematodes in the areas of agar-producing alga Ahnfeltia tobuchiensis field (Tarka Strait, Peter the Great Bay, East Sea). Ocean Science Journal, 42, 165−170.
Posada, D. & Crandall, K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817−818.
Rambaut, A. & Drummond, A.J. (2007) Tracer v 1.4, Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 13 June 2016)
Ronquist, F. & Huelsenbeck, J.P. (2003) MR BAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 19, 1572−1574.
Somerfield, P.J. & Warwick, R.M. (1996) Meiofauna in Marine Pollution Monitoring Programmes: a Laboratory Manual. Ministry of Agriculture, Fisheries and Food, Lowestoft, 71 pp.
Swofford, D.L. (2002) PAUP*. Phylogenetic Analysis Using Parsimony (and Other Methods). Version 4. Sinauer Associates.Sunderland, MA, USA.
Tchesunov, A.V. & Okhlopkov, J.R. (2006) On some selachinematid nematodes (Chromadorida: Selachinematidae) deposited in the collection of the Smithsonian National Museum of Natural history. Nematology, 8, 21−44.
Tchesunov, A.V. (2014) Order Desmodorida De Coninck, 1965. In: Shmidt-Rhaesa, A. (Ed), Handbook of Zoology Gastrotricha, Cyclioneura and Gnathifera. Vol. 2. Nematoda. De Gruyter, Hamburg, pp. 399−434.
Zeppilli, D., Canals, M. & Danovaro, R. (2012) Pockmarks enhance deep-sea benthic biodiversity: a case study in the western Mediterranean Sea. Diversity and Distributions, 18, 832−846.
http://dx.doi.org/10.1111/j.1472-4642.2011.00859.xZheng, J.W., Subbotin, S.A., He, S.S., Gu, J.F. & Moens, M. (2002) Molecular characterisation of some Asian isolates of Bursaphelenchus xylophilus and B. mucronatus using PCR-RFLPs and sequences of ribosomal DNA. Russian Journal of Nematology, 11, 17–22.
Zograf, J., Trebukhova, Y. & Pavlyuk, O. (2015) New deep-sea free-living marine nematodes from the Sea of Japan: the genera Siphonolaimus and Halichoanolaimus (Nematode: Chromadorea) with keys to species identifications. Zootaxa, 3911 (1), 63–80.
http://dx.doi.org/10.11646/zootaxa.3911.1.3