Abstract
Thirty-four species of Culicidae are present in the UK, of which 15 have been implicated as potential vectors of arthropod-borne viruses such as West Nile virus. Identification of mosquito feeding preferences is paramount to the understanding of vector-host-pathogen interactions which, in turn, would assist in the control of disease outbreaks. Results are presented on the application of DNA barcoding for vertebrate species identification in blood-fed female mosquitoes in rural locations. Blood-fed females (n = 134) were collected in southern England from rural sites and identified based on morphological criteria. Blood meals from 59 specimens (44%) were identified as feeding on eight hosts: European rabbit, cow, human, barn swallow, dog, great tit, magpie and blackbird. Analysis of the cytochrome c oxidase subunit I mtDNA barcoding region and the internal transcribed spacer 2 rDNA region of the specimens morphologically identified as Anopheles maculipennis s.l. revealed the presence of An. atroparvus and An. messeae. A similar analysis of specimens morphologically identified as Culex pipiens/Cx. torrentium showed all specimens to be Cx. pipiens (typical form). This study demonstrates the importance of using molecular techniques to support species-level identification in blood-fed mosquitoes to maximize the information obtained in studies investigating host feeding patterns.
References
Alcaide, M., Rico, C., Ruiz, S., Soriguer, R., Muñoz, J. & Figuerola, J. (2009) Disentangling vector-borne transmission networks: A universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE, 4, 9.
https://doi.org/10.1371/journal.pone.0007092Bahnck, C.M. & Fonseca, D.M. (2006) Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. American Journal of Tropical Medicine and Hygiene, 75, 251–255.
Bessell, P.R., Robinson, R.A., Golding, N., Searle, K.R., Handel, I.G., Boden, L.A., Purse, B.V. & Bronsvoort, B.M. (2014) Quantifying the risk of introduction of West Nile virus into Great Britain by migrating passerine birds. Transbound Emerging Diseases, 63, 347‒359.
https://doi.org/10.1111/tbed.12310Börstler, J., Jöst, H., Garms, R., Krüger, A., Tannich, E., Becker, N., Schmidt-Chanasit, J. & Lühken, Renke (2016) Host-feeding patterns of mosquito species in Germany. Parasites & Vectors, 9, 1‒14.
https://doi.org/10.1186/s13071-016-1597-zBrugman, V.A. (2015) Host selection and feeding preferences of farm-associated mosquitoes (Diptera: Culicidae) in the United Kingdom. PhD Thesis, London School of Hygiene and Tropical Medicine, London, 272 pp.
Brugman, V.A., Hernández-Triana, L.M., Prosser, S.W., Weland, C.., Westcott, D.G., Fooks, A.R. & Johnson, N. (2015) Molecular species identification, host preference and detection of Myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK. Parasites and Vectors, 8, 1‒8.
https://doi.org/10.1186/s13071-015-1034-8Chaves, L.F., Harrington, L.C., Keogh, C.L., Nguyen, A.M. & Kitron, U.D. (2010) Blood feeding patterns of mosquitoes: random or structured? Frontiers in Zoology, 7, 3.
https://doi.org/10.1186/1742-9994-7-3Collins, F.H. & Paskewitz, S.M. (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insects Molecular Biology, 5, 1–9.
https://doi.org/10.1111/j.1365-2583.1996.tb00034.xCranston, P.S., Ramsdale, C.D., Snow, K.R. & White, G.B. (1987) Keys to the adults, male hypopygia, fourth-instar larvae and pupae of the British mosquitoes (Culicidae) with notes on their ecology and medical importance. Freshwater Biological Association Scientific Publication, 48, 1‒152.
Cywinska, A., Hunter, F.F. & Hebert, P.D.N. (2006) Identifying Canadian mosquito species through DNA barcodes. Medical Veterinary Entomology, 20, 413‒424.
https://doi.org/10.1111/j.1365-2915.2006.00653.xDanabalan, R., Ponsonby, D.J. & Linton, Y.-M. (2012) A critical assessment of available molecular identification tools for determining the status of Culex pipiens s.l. in the United Kingdom. Journal of American Mosquitoes Control Association, 28, 68–74.
https://doi.org/10.2987/8756-971x-28.0.68Danabalan, R., Monaghan, M.T., Ponsonby, D.J. & Linton, Y.-M. (2014) Occurrence and host preferences of Anopheles maculipennis group mosquitoes in England and Wales. Medical and Veterinary Entomology, 28, 169–178.
https://doi.org/10.1111/mve.12023Fernández de Marco, M., Brugman, V.A., Hernández-Triana, L.M., Thorne, L., Phipps, P., Nikolova, N.I., Fooks, A.R. & Johnson, N. (2016) Detection of Theileria orientalis in mosquito blood meals in the United Kingdom. Veterinary Parasitology, 229, 31–36.
https://doi.org/10.1016/j.vetpar.2016.09.012Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biotechnology, 3, 294‒299.
Fonseca, D.M., Atkinson, C.T. & Fleischer, R.C. (1998) Microsatellite primers for Culex pipiens and Culex quinquefasciatus, the vector of avian malaria in Hawaii. Molecular Ecology, 7, 1617–1619.
Gariepy, T.D., Lindsay, R., Ogden, N. & Gregory, T.R. (2012) Identifying the last supper: utility of the DNA barcode library for bloodmeal identification in ticks. Molecular Ecology Resources, 12, 646‒652.
https://doi.org/10.1111/j.1755-0998.2012.03140.xGunay, F., Alten, B., Simsek, F., Aldemir, A. & Linton, Y.-M. (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveal hidden diversity and new potential vectors. Acta Tropica, 143, 112‒120.
Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of Biological Sciences, 270, 313–321.
https://doi.org/10.1098/rspb.2002.2218Hebert, P.D.N., Ratnasingham, S. & DeWaard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of Biological Sciences, 270, S96–S99.
https://doi.org/10.1098/rsbl.2003.0025Hernández-Triana, L.M., Crainey, J.L., Hall, A., Fatih, F., Mackenzie-Dodds, J., Shelley, A.J., Zhou, X., Post, R.J., Gregory, R.T. & Hebert, P.D.N. (2012) The utility of DNA barcoding for species identification within the blackfly subgenus Trichodagmia Enderlein (Diptera: Simuliidae: Simulium) and related taxa in the New World. Zootaxa, 3514, 43‒69.
Hernández-Triana, L.M., Prosser, S.W., Rodríguez-Pérez, M.A, Chaverri, L.G., Hebert, P.D.N. & Gregory, R.T. (2014) Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence length. Molecular Ecology Resources, 14, 508‒518.
https://doi.org/10.1111/1755-0998.12208Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Resources Notes, 7, 544–548.
https://doi.org/10.1111/j.1471-8286.2007.01748.xKent, R.J. (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Molecular Ecology Resources, 9, 4–18.
https://doi.org/10.1111/j.1755-0998.2008.02469.xKent, R.J. & Norris, D.E. (2005) Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. American Journal of Tropical Medicine and Hygiene, 73, 336–342.
Khoshdel-Nezamiha, F., Vatandoost, H., Oshaghi, M.A., Azari-Hamidian, S., Mianroodi, R.A., Dabiri, F., Bagheri, M., Terenius, O. & Chavshin, A.R. (2016) Molecular characterization of mosquitoes (Diptera: Culicidae) of Northwestern Iran using rDNA-ITS2. Japanese Journal of Infectious Diseases, 69 (4), 319–322.
https://doi.org/10.7883/yoken.jjid.2015.269Kocher, A., Gantier, J.C., Gaborit, P., Zinger, L., Holota, H., Valiere, S., Dusfour, I., Girod, R., Bañuls, A.L. & Murienne, J. (2016) Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Molecular Ecology Resources, 17 (2), 172–182.
https://doi.org/10.1111/1755-0998.12556Kumar, N.P., Rajavel, A.R., Natarajan, R. & Jambulingam, P. (2007) DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 44, 1‒7.
https://doi.org/10.1093/jmedent/41.5.01Laurito, M., Oliveira, T.M., Almirón, W.R. & Sallum, M.A. (2013) CO1 barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Memórias do Instituto Oswaldo Cruz, 108, 110‒122.
https://doi.org/10.1590/0074-0276130457Lee, P.-S., Gan, H.M., Clements, G,-R. &Wilson, J.J. (2016) Field calibration of blowfly-derived DNA against traditional methods for assessing mammal diversity in tropical forests. Genome, 59 (11), 1008–1022.
https://doi.org/10.1139/gen-2015-0193Linton, Y.-M., Harbach, R.E., Seng, C.M., Anthony, T.G. & Matusop, A. (2001) Morphological and molecular identity of Anopheles (Cellia) sundaicus (Diptera: Culicidae), the nominotypical member of a malaria vector species complex in Southeast Asia. Systematic Entomology, 26, 357‒366.
https://doi.org/10.1046/j.1365-3113.2001.00153.xLinton, Y.-M., Lee, A. & Curtis, C. (2005) Discovery of a third member of the Maculipennis group in SW England. European Mosquitoes Bulletin, 19, 5–9.
Manley, R., Harrup, L.E., Veronesi, E., Stubbins, F., Stoner, J., Gubbins, S., Gubbins, S., Wilson, A., Batten, C., Koenraadt, Henstock, M., Barber, J. & Carpenter, S. (2015) Testing of UK populations of Culex pipiens L. for Schmallenberg virus vector competence and their colonization. PLoS ONE, 10 (8), e0134453.
https://doi.org/10.1371/journal.pone.0134453Martínez-de la Puente, J., Ruiz, S., Soriguer, R. & Figuerola, J. (2013) Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malaria Journal, 12, 109.
https://doi.org/10.1186/1475-2875-12-109Mukabana, W.R., Takken, W. & Knols, B.G.J. (2002) Analysis of arthropod bloodmeals using molecular genetic markers. Trends in Parasitology, 18, 505–509.
https://doi.org/10.1016/S1471-4922(02)02364-4Muñoz, J., Ruiz, S., Sorigeur, R., Alcaide, M., Viana, D.S. & Roiz, D. (2012) Feeding patterns of potential West Nile virus vectors in south-west Spain. PLoS ONE, 7, e39549.
https://doi.org/10.1371/journal.pone.0039549Murugan, K., Vadivalagan, C., Karthika, P., Panneerselvam, C., Paulpandi, M., Subramaniam, J., Wei H., Aziz, A.T., Alsalhi, M.S., Devanesan, S., Nicoletti, M., Paramasivan, R., Parajulee, M.N. & Benelli, G. (2015) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitology Research, 115, 107‒121.
https://doi.org/10.1007/s00436-015-4726-2Petersen, E., Wilson, M.E., Touch, S., McCloskey, B., Mwaba, P., Bates, M., Dar, O., Mattes, F., Kidd, M., Ippolito, G., Azhar, E.I. & Zumla, A. (2016) Rapid spread of Zika virus in The Americas—Implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. International Journal in Infectious Diseases, 44, 11‒15.
https://doi.org/10.1016/j.ijid.2016.02.001Prosser, S.W., deWaard, J.R., Miller, S.E. & Hebert, P.D. (2016) DNA barcodes from century-old type specimens using next generation sequencing. Molecular Ecology Resources, 16, 487–497.
https://doi.org/10.1111/1755-0998.12474Rudolf, R., Czajka, C., Börstler J., Melaun, C. , Jöst, H., von Thien, H., Badusche, M. , Becker, N., Schmidt-Chanasit, J., Krüger, A., Egbert Tannich, E. & Becker, S. (2013) First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PloS ONE, 8, e71832.
https://doi.org/10.1371/journal.pone.0071832Schaffner, F., Medlock, J.M. & Van Bortel, W. (2013) Public health significance of invasive mosquitoes in Europe. Clinical Microbiology and Infection, 19, 685‒692.
https://doi.org/10.1111/1469-0691.12189Schönenberger, A.C., Wagner, S., Tuten, H.C., Schaffner, F., Torgerson, P., Furrer, S., Mathis, A. & Silaghi, C. (2016) Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Medical Veterinary and Entomology, 30, 39‒52.
https://doi.org/10.1111/mve.12155Service, M.W. (1971) Feeding behaviour and host preferences of British mosquitoes. Bulletin of Entomological Research, 60, 653–661.
https://doi.org/10.1017/S0007485300042401Shaikevich, E.V. (2007) PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens f. molestus and Cx. torrentium of the Pipiens Complex. European Mosquitoes Bulletin, 23, 25‒30.
Smith, J.L. & Fonseca, D.M. (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). American Journal of Tropical Medicine and Hygiene, 70, 339‒345.
Snow, K.R. (1990) Mosquitoes. Naturalists’ Handbook 14. Richmond Publishing Co. Ltd, Slough, vi + 66 pp.
Tamura, K., Stoecher, G., Peterson, D. & Kumar, S. (2013) Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725‒2729.
https://doi.org/10.1093/molbev/mst197Tchouassi, D.P, Okiro, O.K.R., Sang, R., Cohnstaed, L.W., McVey, D.S. & Torto, B. (2016) Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya. Parasites & Vectors, 9, 184.
https://doi.org/10.1186/s13071-016-1473-xTuten, H.C., Bridges, W.C., Paul, K.S. & Adler, P.A. (2012) Blood-feeding ecology of mosquitoes in zoos. Medical and Veterinary Entomology, 24, 407‒416.
https://doi.org/10.1111/j.1365-2915.2012.01012.xVersteirt, V., Nagy, Z.T., Roelants, P., Denis, L., Breman, F.C., Damiens, D., Dekoninck, W., Backeljau, T., Coosemans, M. & Van Bortel, W. (2015) Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Molecular Ecological Resources, 15, 449‒457.
https://doi.org/10.1111/1755-0998.12318