Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-04-03
Page range: 67–76
Abstract views: 199
PDF downloaded: 3

Molecular approaches for blood meal analysis and species identification of mosquitoes (Insecta: Diptera: Culicidae) in rural locations in southern England, United Kingdom

Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
The Pirbright Institute, Ash Road, Woking, GU24 0NF
Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
School of Environmental Sciences, University of Guelph, Ontario N1G 2W1, Canada
Centre for Biodiversity Genomics, Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road, Guelph, Ontario N1G 2W1, Canada
Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK.
Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK. Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, L697BE, UK
Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK. Faculty of Health and Medical Science, University of Surrey, Guildford, Surrey, GU2 7XH, UK
Diptera Blood meals mosquitoes cytochrome c oxidase I internal transcribed spacer 2 DNA barcoding southern England United Kingdom

Abstract

Thirty-four species of Culicidae are present in the UK, of which 15 have been implicated as potential vectors of arthropod-borne viruses such as West Nile virus. Identification of mosquito feeding preferences is paramount to the understanding of vector-host-pathogen interactions which, in turn, would assist in the control of disease outbreaks. Results are presented on the application of DNA barcoding for vertebrate species identification in blood-fed female mosquitoes in rural locations. Blood-fed females (n = 134) were collected in southern England from rural sites and identified based on morphological criteria. Blood meals from 59 specimens (44%) were identified as feeding on eight hosts: European rabbit, cow, human, barn swallow, dog, great tit, magpie and blackbird. Analysis of the cytochrome c oxidase subunit I mtDNA barcoding region and the internal transcribed spacer 2 rDNA region of the specimens morphologically identified as Anopheles maculipennis s.l. revealed the presence of An. atroparvus and An. messeae. A similar analysis of specimens morphologically identified as Culex pipiens/Cx. torrentium showed all specimens to be Cx. pipiens (typical form). This study demonstrates the importance of using molecular techniques to support species-level identification in blood-fed mosquitoes to maximize the information obtained in studies investigating host feeding patterns.

 

References

  1. Alcaide, M., Rico, C., Ruiz, S., Soriguer, R., Muñoz, J. & Figuerola, J. (2009) Disentangling vector-borne transmission networks: A universal DNA barcoding method to identify vertebrate hosts from arthropod bloodmeals. PLoS ONE, 4, 9.
    https://doi.org/10.1371/journal.pone.0007092

    Bahnck, C.M. & Fonseca, D.M. (2006) Rapid assay to identify the two genetic forms of Culex (Culex) pipiens L. (Diptera: Culicidae) and hybrid populations. American Journal of Tropical Medicine and Hygiene, 75, 251–255.

    Bessell, P.R., Robinson, R.A., Golding, N., Searle, K.R., Handel, I.G., Boden, L.A., Purse, B.V. & Bronsvoort, B.M. (2014) Quantifying the risk of introduction of West Nile virus into Great Britain by migrating passerine birds. Transbound Emerging Diseases, 63, 347‒359.
    https://doi.org/10.1111/tbed.12310

    Börstler, J., Jöst, H., Garms, R., Krüger, A., Tannich, E., Becker, N., Schmidt-Chanasit, J. & Lühken, Renke (2016) Host-feeding patterns of mosquito species in Germany. Parasites & Vectors, 9, 1‒14.
    https://doi.org/10.1186/s13071-016-1597-z

    Brugman, V.A. (2015) Host selection and feeding preferences of farm-associated mosquitoes (Diptera: Culicidae) in the United Kingdom. PhD Thesis, London School of Hygiene and Tropical Medicine, London, 272 pp.

    Brugman, V.A., Hernández-Triana, L.M., Prosser, S.W., Weland, C.., Westcott, D.G., Fooks, A.R. & Johnson, N. (2015) Molecular species identification, host preference and detection of Myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK. Parasites and Vectors, 8, 1‒8.
    https://doi.org/10.1186/s13071-015-1034-8

    Chaves, L.F., Harrington, L.C., Keogh, C.L., Nguyen, A.M. & Kitron, U.D. (2010) Blood feeding patterns of mosquitoes: random or structured? Frontiers in Zoology, 7, 3.
    https://doi.org/10.1186/1742-9994-7-3

    Collins, F.H. & Paskewitz, S.M. (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insects Molecular Biology, 5, 1–9.
    https://doi.org/10.1111/j.1365-2583.1996.tb00034.x

    Cranston, P.S., Ramsdale, C.D., Snow, K.R. & White, G.B. (1987) Keys to the adults, male hypopygia, fourth-instar larvae and pupae of the British mosquitoes (Culicidae) with notes on their ecology and medical importance. Freshwater Biological Association Scientific Publication, 48, 1‒152.

    Cywinska, A., Hunter, F.F. & Hebert, P.D.N. (2006) Identifying Canadian mosquito species through DNA barcodes. Medical Veterinary Entomology, 20, 413‒424.
    https://doi.org/10.1111/j.1365-2915.2006.00653.x

    Danabalan, R., Ponsonby, D.J. & Linton, Y.-M. (2012) A critical assessment of available molecular identification tools for determining the status of Culex pipiens s.l. in the United Kingdom. Journal of American Mosquitoes Control Association, 28, 68–74.
    https://doi.org/10.2987/8756-971x-28.0.68

    Danabalan, R., Monaghan, M.T., Ponsonby, D.J. & Linton, Y.-M. (2014) Occurrence and host preferences of Anopheles maculipennis group mosquitoes in England and Wales. Medical and Veterinary Entomology, 28, 169–178.
    https://doi.org/10.1111/mve.12023

    Fernández de Marco, M., Brugman, V.A., Hernández-Triana, L.M., Thorne, L., Phipps, P., Nikolova, N.I., Fooks, A.R. & Johnson, N. (2016) Detection of Theileria orientalis in mosquito blood meals in the United Kingdom. Veterinary Parasitology, 229, 31–36.
    https://doi.org/10.1016/j.vetpar.2016.09.012

    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biotechnology, 3, 294‒299.

    Fonseca, D.M., Atkinson, C.T. & Fleischer, R.C. (1998) Microsatellite primers for Culex pipiens and Culex quinquefasciatus, the vector of avian malaria in Hawaii. Molecular Ecology, 7, 1617–1619.

    Gariepy, T.D., Lindsay, R., Ogden, N. & Gregory, T.R. (2012) Identifying the last supper: utility of the DNA barcode library for bloodmeal identification in ticks. Molecular Ecology Resources, 12, 646‒652.
    https://doi.org/10.1111/j.1755-0998.2012.03140.x

    Gunay, F., Alten, B., Simsek, F., Aldemir, A. & Linton, Y.-M. (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveal hidden diversity and new potential vectors. Acta Tropica, 143, 112‒120.

    Hebert, P.D.N., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of Biological Sciences, 270, 313–321.
    https://doi.org/10.1098/rspb.2002.2218

    Hebert, P.D.N., Ratnasingham, S. & DeWaard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of Biological Sciences, 270, S96–S99.
    https://doi.org/10.1098/rsbl.2003.0025

    Hernández-Triana, L.M., Crainey, J.L., Hall, A., Fatih, F., Mackenzie-Dodds, J., Shelley, A.J., Zhou, X., Post, R.J., Gregory, R.T. & Hebert, P.D.N. (2012) The utility of DNA barcoding for species identification within the blackfly subgenus Trichodagmia Enderlein (Diptera: Simuliidae: Simulium) and related taxa in the New World. Zootaxa, 3514, 43‒69.

    Hernández-Triana, L.M., Prosser, S.W., Rodríguez-Pérez, M.A, Chaverri, L.G., Hebert, P.D.N. & Gregory, R.T. (2014) Recovery of DNA barcodes from blackfly museum specimens (Diptera: Simuliidae) using primer sets that target a variety of sequence length. Molecular Ecology Resources, 14, 508‒518.
    https://doi.org/10.1111/1755-0998.12208

    Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Resources Notes, 7, 544–548.
    https://doi.org/10.1111/j.1471-8286.2007.01748.x

    Kent, R.J. (2009) Molecular methods for arthropod bloodmeal identification and applications to ecological and vector-borne disease studies. Molecular Ecology Resources, 9, 4–18.
    https://doi.org/10.1111/j.1755-0998.2008.02469.x

    Kent, R.J. & Norris, D.E. (2005) Identification of mammalian blood meals in mosquitoes by a multiplexed polymerase chain reaction targeting cytochrome B. American Journal of Tropical Medicine and Hygiene, 73, 336–342.

    Khoshdel-Nezamiha, F., Vatandoost, H., Oshaghi, M.A., Azari-Hamidian, S., Mianroodi, R.A., Dabiri, F., Bagheri, M., Terenius, O. & Chavshin, A.R. (2016) Molecular characterization of mosquitoes (Diptera: Culicidae) of Northwestern Iran using rDNA-ITS2. Japanese Journal of Infectious Diseases, 69 (4), 319–322.
    https://doi.org/10.7883/yoken.jjid.2015.269

    Kocher, A., Gantier, J.C., Gaborit, P., Zinger, L., Holota, H., Valiere, S., Dusfour, I., Girod, R., Bañuls, A.L. & Murienne, J. (2016) Vector soup: high-throughput identification of Neotropical phlebotomine sand flies using metabarcoding. Molecular Ecology Resources, 17 (2), 172–182.
    https://doi.org/10.1111/1755-0998.12556

    Kumar, N.P., Rajavel, A.R., Natarajan, R. & Jambulingam, P. (2007) DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). Journal of Medical Entomology, 44, 1‒7.
    https://doi.org/10.1093/jmedent/41.5.01

    Laurito, M., Oliveira, T.M., Almirón, W.R. & Sallum, M.A. (2013) CO1 barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil. Memórias do Instituto Oswaldo Cruz, 108, 110‒122.
    https://doi.org/10.1590/0074-0276130457

    Lee, P.-S., Gan, H.M., Clements, G,-R. &Wilson, J.J. (2016) Field calibration of blowfly-derived DNA against traditional methods for assessing mammal diversity in tropical forests. Genome, 59 (11), 1008–1022.
    https://doi.org/10.1139/gen-2015-0193

    Linton, Y.-M., Harbach, R.E., Seng, C.M., Anthony, T.G. & Matusop, A. (2001) Morphological and molecular identity of Anopheles (Cellia) sundaicus (Diptera: Culicidae), the nominotypical member of a malaria vector species complex in Southeast Asia. Systematic Entomology, 26, 357‒366.
    https://doi.org/10.1046/j.1365-3113.2001.00153.x

    Linton, Y.-M., Lee, A. & Curtis, C. (2005) Discovery of a third member of the Maculipennis group in SW England. European Mosquitoes Bulletin, 19, 5–9.

    Manley, R., Harrup, L.E., Veronesi, E., Stubbins, F., Stoner, J., Gubbins, S., Gubbins, S., Wilson, A., Batten, C., Koenraadt, Henstock, M., Barber, J. & Carpenter, S. (2015) Testing of UK populations of Culex pipiens L. for Schmallenberg virus vector competence and their colonization. PLoS ONE, 10 (8), e0134453.
    https://doi.org/10.1371/journal.pone.0134453

    Martínez-de la Puente, J., Ruiz, S., Soriguer, R. & Figuerola, J. (2013) Effect of blood meal digestion and DNA extraction protocol on the success of blood meal source determination in the malaria vector Anopheles atroparvus. Malaria Journal, 12, 109.
    https://doi.org/10.1186/1475-2875-12-109

    Mukabana, W.R., Takken, W. & Knols, B.G.J. (2002) Analysis of arthropod bloodmeals using molecular genetic markers. Trends in Parasitology, 18, 505–509.
    https://doi.org/10.1016/S1471-4922(02)02364-4

    Muñoz, J., Ruiz, S., Sorigeur, R., Alcaide, M., Viana, D.S. & Roiz, D. (2012) Feeding patterns of potential West Nile virus vectors in south-west Spain. PLoS ONE, 7, e39549.
    https://doi.org/10.1371/journal.pone.0039549

    Murugan, K., Vadivalagan, C., Karthika, P., Panneerselvam, C., Paulpandi, M., Subramaniam, J., Wei H., Aziz, A.T., Alsalhi, M.S., Devanesan, S., Nicoletti, M., Paramasivan, R., Parajulee, M.N. & Benelli, G. (2015) DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitology Research, 115, 107‒121.
    https://doi.org/10.1007/s00436-015-4726-2

    Petersen, E., Wilson, M.E., Touch, S., McCloskey, B., Mwaba, P., Bates, M., Dar, O., Mattes, F., Kidd, M., Ippolito, G., Azhar, E.I. & Zumla, A. (2016) Rapid spread of Zika virus in The Americas—Implications for public health preparedness for mass gatherings at the 2016 Brazil Olympic Games. International Journal in Infectious Diseases, 44, 11‒15.
    https://doi.org/10.1016/j.ijid.2016.02.001

    Prosser, S.W., deWaard, J.R., Miller, S.E. & Hebert, P.D. (2016) DNA barcodes from century-old type specimens using next generation sequencing. Molecular Ecology Resources, 16, 487–497.
    https://doi.org/10.1111/1755-0998.12474

    Rudolf, R., Czajka, C., Börstler J., Melaun, C. , Jöst, H., von Thien, H., Badusche, M. , Becker, N., Schmidt-Chanasit, J., Krüger, A., Egbert Tannich, E. & Becker, S. (2013) First nationwide surveillance of Culex pipiens complex and Culex torrentium mosquitoes demonstrated the presence of Culex pipiens biotype pipiens/molestus hybrids in Germany. PloS ONE, 8, e71832.
    https://doi.org/10.1371/journal.pone.0071832

    Schaffner, F., Medlock, J.M. & Van Bortel, W. (2013) Public health significance of invasive mosquitoes in Europe. Clinical Microbiology and Infection, 19, 685‒692.
    https://doi.org/10.1111/1469-0691.12189

    Schönenberger, A.C., Wagner, S., Tuten, H.C., Schaffner, F., Torgerson, P., Furrer, S., Mathis, A. & Silaghi, C. (2016) Host preferences in host-seeking and blood-fed mosquitoes in Switzerland. Medical Veterinary and Entomology, 30, 39‒52.
    https://doi.org/10.1111/mve.12155

    Service, M.W. (1971) Feeding behaviour and host preferences of British mosquitoes. Bulletin of Entomological Research, 60, 653–661.
    https://doi.org/10.1017/S0007485300042401

    Shaikevich, E.V. (2007) PCR-RFLP of the COI gene reliably differentiates Cx. pipiens, Cx. pipiens f. molestus and Cx. torrentium of the Pipiens Complex. European Mosquitoes Bulletin, 23, 25‒30.

    Smith, J.L. & Fonseca, D.M. (2004) Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera: Culicidae). American Journal of Tropical Medicine and Hygiene, 70, 339‒345.

    Snow, K.R. (1990) Mosquitoes. Naturalists’ Handbook 14. Richmond Publishing Co. Ltd, Slough, vi + 66 pp.

    Tamura, K., Stoecher, G., Peterson, D. & Kumar, S. (2013) Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725‒2729.
    https://doi.org/10.1093/molbev/mst197

    Tchouassi, D.P, Okiro, O.K.R., Sang, R., Cohnstaed, L.W., McVey, D.S. & Torto, B. (2016) Mosquito host choices on livestock amplifiers of Rift Valley fever virus in Kenya. Parasites & Vectors, 9, 184.
    https://doi.org/10.1186/s13071-016-1473-x

    Tuten, H.C., Bridges, W.C., Paul, K.S. & Adler, P.A. (2012) Blood-feeding ecology of mosquitoes in zoos. Medical and Veterinary Entomology, 24, 407‒416.
    https://doi.org/10.1111/j.1365-2915.2012.01012.x

    Versteirt, V., Nagy, Z.T., Roelants, P., Denis, L., Breman, F.C., Damiens, D., Dekoninck, W., Backeljau, T., Coosemans, M. & Van Bortel, W. (2015) Identification of Belgian mosquito species (Diptera: Culicidae) by DNA barcoding. Molecular Ecological Resources, 15, 449‒457.
    https://doi.org/10.1111/1755-0998.12318