Abstract
In the present study, we report the high-coverage complete mitochondrial genome (mitogenome) of the cricket Cardiodactylus muiri Otte, 2007. The mitogenome was sequenced using a long-PCR approach on an Ion Torrent Personal Genome Machine (PGM) for next generation sequencing technology. The total length of the amplified mitogenome is 16,328 bp, representing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes and one noncoding region (D-loop region). The new sets of long-PCR primers reported here are invaluable resources for future comparative evolutionary genomic studies in Orthopteran insects. The new mitogenome sequence is compared with published cricket mitogenomes. In the taxonomic part, we present new records for the species and describe life-history traits, habitat and male calling song of the species; based on observation of new material, the species Cardiodactylus buru Gorochov & Robillard, 2014 is synonymized under C. muiri.
References
Bernt, M., Donath, A., Juhling, F., Externbrink, F., Florentz, C., Fritzsch, G., Putz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution, 69, 313–319.
https://doi.org/10.1016/j.ympev.2012.08.023Chintauan-Marquier, I.C., Legendre, F., Hugel, S., Robillard, T., Grandcolas, P., Nel, A., Zuccon, D. & Desutter-Grandcolas, L. (2016) Laying the foundations of evolutionary and systematic studies in crickets (Insecta, Orthoptera): a multilocus phylogenetic analysis. Cladistics, 32 (1), 54–81.
https://doi.org/10.1111/cla.12114Cameron, S.L. (2014) Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annual Review of Entomology, 59, 95–117.
https://doi.org/10.1146/annurev-ento-011613-162007Crampton-Platt, A., Yu, D.W., Zhou, X. & Vogler, A.P. (2016) Mitochondrial metagenomics: letting the genes out of the bottle. Gigascience, 5, 15.
https://doi.org/10.1186/s13742-016-0120-yCrampton-Platt, A., Timmermans, M.J., Gimmel, M.L., Kutty, S.N., Cockerill, T.D., Vun Khen, C. & Vogler, A.P. (2015) Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample. Molecular Biology and Evolution, 32, 2302–2316.
https://doi.org/10.1093/molbev/msv111Gomez-Rodriguez, C., Crampton-Platt, A., Timmermans, M.J.T.N., Baselga, A. & Vogler, A.P. (2015) Validating the power of mitochondrial metagenomics for community ecology and phylogenetics of complex assemblages. Methods in Ecology and Evolution, 6, 883–894.
https://doi.org/10.1111/2041-210X.12376Hinsinger, D.D., Debruyne, R., Thomas, M., Denys, G.P.J., Mennesson, M., Utage, J. & Dettai, A. (2015) Fishing for barcodes in the Torrent: from COI to complete mitogenomes on NGS platforms. DNA Barcodes, 3, 170–186.
https://doi.org/10.1515/dna-2015-0019Jia, H.Y., Guo, Y.F., Zhao, W.W. & Wang, K. (2014) Long-range PCR in next-generation sequencing: comparison of six enzymes and evaluation on the MiSeq sequencer. Scientific Reports, 4, 5737.
https://doi.org/10.1038/srep05737Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649.
https://doi.org/10.1093/bioinformatics/bts199Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874.
https://doi.org/10.1093/molbev/msw054Konstantinov, Y.M., Dietrich, A., Weber-Lotfi, F., Ibrahim, N., Klimenko, E.S., Tarasenko, V.I., Bolotova, T.A. & Koulintchenko, M.V. (2016) DNA import into mitochondria. Biochemistry (Moscow), 81, 1044–1056.
https://doi.org/10.1134/S0006297916100035Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32, 268–274.
https://doi.org/10.1093/molbev/msu300Ragge, D.R. & Reynolds, W.J. (1998) The songs of the grasshoppers and crickets of Western Europe. Harley Books, Colchester, 600 pp.
Robillard, T. & Desutter-Grandcolas, L. (2004a) High-frequency calling in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae): adaptive radiation revealed by phylogenetic analysis. Biological Journal of the Linnean Society, 83, 577–584.
Robillard, T. & Desutter-Grandcolas, L. (2004b) Phylogeny and the modalities of acoustic diversification in extant Eneopterinae (Insecta, Orthoptera, Grylloidea, Eneopteridae). Cladistics, 20, 271–293.
Robillard, T., ter Hofstede, H.M., Orivel, J. & Vicente, N.M. (2015) Bioacoustics of the Neotropical Eneopterinae (Orthoptera, Grylloidea, Gryllidae). Bioacoustics-the International Journal of Animal Sound and Its Recording, 24, 123–143.
https://doi.org/10.1080/09524622.2014.996915Robillard, T. Gorochov, A.V., Poulain, S. & Suhardjono, Y.R. (2014) Revision of the cricket genus Cardiodactylus (Orthoptera, Eneopterinae, Lebinthini): the species from both sides of the Wallace line, with description of 25 new species. Zootaxa, 3854 (1), 1–104.
https://doi.org/10.11646/zootaxa.3854.1.1Robillard, T., Montealegre-Z, F., Desutter-Grandcolas, L., Grandcolas, P. & Robert, D. (2013) Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies. Journal of Experimental Biology, 216, 2001–2011.
https://doi.org/10.1242/jeb.083964Schattner, P., Brooks, A.N. & Lowe, T.M. (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research, 33, 686–689. [W686–689]
https://doi.org/10.1093/nar/gki366Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating Molecular Evolution into Phylogenetic Analysis, and a New Compilation of Conserved Polymerase Chain Reaction Primers for Animal Mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 37, 545–579.
https://doi.org/10.1146/annurev.ecolsys.37.091305.110018Specht R. (2009) Avisoft-SASLab Pro: Sound Analysis and Synthesis Laboratory. Avisoft Bioacoustics, Berlin. [software]
Song, H.J., Amedegnato, C., Cigliano, M.M., Desutter-Grandcolas, L., Heads, S.W., Huang, Y., Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31, 621–651.
https://doi.org/10.1111/cla.12116ter Hofstede, H.M., Schoneich, S., Robillard, T. & Hedwig, B. (2015) Evolution of a Communication System by Sensory Exploitation of Startle Behavior. Current Biology, 25, 3245–3252.
https://doi.org/10.1016/j.cub.2015.10.064Wolff, J.N., Shearman, D.C., Brooks, R.C. & Ballard, J.W. (2012) Selective enrichment and sequencing of whole mitochondrial genomes in the presence of nuclear encoded mitochondrial pseudogenes (numts). PLoS One, 7, e37142.
https://doi.org/10.1371/journal.pone.0037142Yang, J., Ren, Q. & Huang, Y. (2016a) Complete mitochondrial genomes of three crickets (Orthoptera: Gryllidae) and comparative analyses within Ensifera mitogenomes. Zootaxa, 4092, 529–547.
Yang, J., Ye, F. & Huang, Y. (2016b) Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene, 575, 702–711.
Zhou, J.X., Jia, Y.C., Yang, X.C. & Li, Q. (2015) The complete mitochondrial genome of the black field cricket, Teleogryllus oceanicus. Mitochondrial DNA, 2015, 1–2.
Zhou, Z., Ye, H., Huang, Y. & Shi, F. (2010) The phylogeny of Orthoptera inferred from mtDNA and description of Elimaea cheni (Tettigoniidae: Phaneropterinae) mitogenome. Journal of Genetics and Genomics, 37, 315–324.
https://doi.org/10.1016/S1673-8527(09)60049-7