Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2017-06-15
Page range: 32–50
Abstract views: 83
PDF downloaded: 3

Luciobarbus chelifensis and L. mascarensis, two new species from Algeria (Teleostei: Cyprinidae)

Department of Agronomy, University of Mohamed Kheider, BP 145 RP, 07000 Biskra, Algeria. Zoogeography Research Unit, Department of Biology, Ecology and Evolution, University of Liège, Chemin de la vallée 4 (Bât. B22) 4000 Sart Tilman, Belgium.
Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 310, 12587 Berlin, Germany.
Earth and life Institute, Biodiversity research Center, UCL-17. 07. 04, Bâtiment Carnoy, Croix du Sud, 5, B-1348, Louvain-la-Neuve, Belgium. Royal Museum for Central Africa, Leuvensesteenweg 13, 3080 Tervuren, Belgium.
Zoogeography Research Unit, Department of Biology, Ecology and Evolution, University of Liège, Chemin de la vallée 4 (Bât. B22) 4000 Sart Tilman, Belgium.
Pisces North Africa Mediterranean biodiversity hotspot Morphology Cytochome b D-loop control region

Abstract

Cyprinids of the genus Luciobarbus are the most abundant and widespread fishes in most freshwater ecosystems in the Maghreb. In the Mediterranean basin of Morocco, Algeria and Tunisia, all species of Luciobarbus—with exception of L. guercifensis—are superficially very similar and are distinguished mostly by minor morphometric characters. Molecular characters distinguish all species well and nine species are recognised from the area, two of them described here. Luciobarbus chelifensis, from the Chelif River drainage in Algeria, is distinguished by having 41–43+1–2 lateral line scales and a very short anal fin (18–19% SL). Luciobarbus mascarensis, from the Macta River drainage in Algeria, is distinguished by having usually 41+1–2 lateral line scales, a long anal-fin (19–22%) and a short caudal peduncle (15–17% SL). An identification key is given for all African Mediterranean Luciobarbus species except for L. callensis and L. rifensis, which could not be distinguished.

 

References

  1. Astrin, J.J., Stüben, P.E., Misof, B., Wägele, J.W., Gimnich, F., Raupach, M.J. & Ahrens, D. (2012) Exploring diversity in cryptorhynchine weevils (Coleoptera) using distance-, character- and tree-based species delineation. Molecular Phylogenetics and Evolution, 63, 1–14.
    https://doi.org/10.1016/j.ympev.2011.11.018

    Bazinet, A.L., Zwikhl, D.J. & Cummings, M.P. (2014) Agateway for phylogenetic analysis powered by grid computing featuring GARLI 2.0. Systematic Biology, 63, 812–818.
    https://doi.org/10.1093/sysbio/syu031

    Brahimi, A., Tarai, N., Benhassane, A., Henrard, A. & Libois, R. (2016) Genetic and morphological consequences of Quaternary glaciations. A relic barbel lineage (Luciobarbus pallaryi, Cyprinidae) of the Guir Basin (Algeria). Comptes Rendus Biologie, 339, 83–98.
    https://doi.org/10.1016/j.crvi.2015.12.003

    Casal-Lopez, M., Perea, S., Yahyaoui, A. & Doadrio, I. (2015) Taxonomic review of the genus Luciobarbus Heckel; 1843 (Actinopterygii, Cyprinidae) from northwestern Morocco with the description of three new species. Graellsia, 71, 1–24

    Doadrio, I., Casal-López, L. Perea, S. & Yahyaoui, A. (2016b) Taxonomy of rheophilic Luciobarbus Heckel, 1842 (Actinopterygii, Cyprinidae) from Morocco with the description of two new species. Graellsia, 72, 1–17.
    https://doi.org/10.3989/graellsia.2015.v71.135

    Doadrio, I., Casal-López, M. & Perea, S. (2016a) Taxonomic remarks on Barbus moulouyensis pellegrin, 1924 (Actinopterygii, Cyprinidae) with the description of a new species of Luciobarbus Heckel, 1843 from Morocco. Graellsia, 72, 1–24.
    https://doi.org/10.3989/graellsia.2016.v72.174

    Felsenstein, J. (1981) Evolutionary tree from DNA sequences, a maximum likelihood approach, Journal of Molecular Evolution, 17, 368–376.
    https://doi.org/10.1007/BF01734359

    Geiger, M.F., Herder, F., Monaghan, M.T., Almada, V., Barbieri, R., Bariche, M., Berrebi, P., Bohlen, J., Casal-Lopez, M., Delmastro, G.B. Denys, G.P., Dettai, A., Doadrio, I., Kalogianni, E., Kärst, H., Kottelat, M., Kovačić, M., Laporte, M., Lorenzoni, M., Marčić, Z., Özuluğ, M., Perdices, A., Perea, S., Persat, H., Porcelotti, S., Puzzi, C., Robalo, J., Šanda, R., Schneider, M., Šlechtová, V., Stoumboudi, M., Walter, S., Freyhof, J. (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources, 14, 1210–1221.
    https://doi.org/10.1111/1755-0998.12257

    Gouy, M., Guindon, S. & Gascuel, O. (2010) SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biolology and Evolution, 27, 221–224.
    https://doi.org/10.1093/molbev/msp259

    Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape split by a molecular clock by michondrial DNA. Journal of Molecular Evolution, 22, 160–174.
    https://doi.org/10.1007/BF02101694

    Iguchi, K., Tanimura, Y. & Nishida, M. (1997) Sequence divergence in the mtDNA control region of amphidromous and landlocked forms of ayu. Fish Sciences, 63, 901–905.

    Katoh, K. & Standley, D.M. (2013) MAFFT Multiple sequence alignment Software Version 7. Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780.
    https://doi.org/10.1093/molbev/mst010

    Kimura, M. (1980) Estimation of evolutionary distances between homologous nucleotide sequences. Proceedings of the National Academy of Sciences USA, 78, 454–458
    https://doi.org/10.1073/pnas.78.1.454

    Lanave, C., Preparata, G., Saccone, C. & Serio, G. (1984) A new method for calculating evolutionary substitution rates, Journal of Molecular Evolution, 20, 86–93.
    https://doi.org/10.1007/BF02101990

    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biolology and Evolution, 34, 772–773.
    https://doi.org/10.1093/molbev/msw260

    Machordom, A. & Doadrio, I. (2001) Evidence of a cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Molecular Phylogenetics and Evolution, 18, 252–263.
    https://doi.org/10.1006/mpev.2000.0876

    Myers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G. & Kent, J. (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853–858.
    https://doi.org/10.1038/35002501

    Nishida, M., Ohkawa, T. & Iwata, H. (1998) Methods of analysis of genetic population structure with mitochondrial DNA markers. Fish Genetics and Breeding Science, 26, 81–100.

    Palumbi, S.R. (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis, D.M., Moritz, C. & Mable, B.K. (Eds.), Molecular Systematic. 2nd Edition. Sinauer, Sunderland, MA, pp. 5–247.

    Pellegrin, J. (1920) Poissons du Maroc recueillis par M. C. Alluaud. Bulletin du Museum d°Histoire Naturelle, Paris, 26, 612–613.
    https://doi.org/10.5962/bhl.part.1209

    Pellegrin, J. (1939) Les barbeaux de l°Afrique du Nord française: description d’une espèce nouvelle. Bulletin de la Société, des Sciences Naturelles du Maroc, 19, 1–4.

    Perdices, A. & Doadrio, I. (2001) The molecular systematics and biogeography of the European cobitids based on mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 19, 468–478.
    https://doi.org/10.1006/mpev.2000.0900

    Rambaut, A. (2009) FigTree v1.4.2. Available from: http://tree.bio.ed.ac.uk/software/figtree/ (accesed 2 May 2017)

    Rodríguez, F., Oliver, J.L., Marín, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142 (4), 485–501.
    https://doi.org/10.1016/S0022-5193(05)80104-3

    Ronquist. F., Teslenko, M., Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2. Efficient Bayesian phylogenetic inference and model choice across a large, model space. Systematic Biology, 61, 539–542.
    https://doi.org/10.1093/sysbio/sys029

    Sukumaran, J. & Holder, M.T. (2010) DendroPy, a Python library for phylogenetic computing. Bioinformatics, 26, 1569–1571.
    https://doi.org/10.1093/bioinformatics/btq228

    Sukumaran, J. & Holder, M.T. (2015) SumTrees. Phylogenetic tree Summarization, 4.0.0 Available from: https://github.com/jeetsukumaran/Dendrophy (accessed 2 May 2017)

    Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564–577.
    https://doi.org/10.1080/10635150701472164

    Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences (American Mathematical Society), 17, 57–86.

    Tsigenopoulos, C.S., Durand, J.D., Ünlü, E. & Berrebi, P. (2003) Rapid radiation of the Mediterranean Luciobarbus species (Cyprinidae) after the Messinian salinity crisis of the Mediterranean Sea, inferred from mitochondrial phylogenetic analysis. Biological Journal of the Linnean Society, 80, 207–222.
    https://doi.org/10.1046/j.1095-8312.2003.00237.x