Abstract
A re-evaluation of the phylogenetic relationships of the four species of the monophyletic Cyrtodactylus conodorensis group using the mitochondrial gene ND2 with Bayesian and Maximum Likelihood analyses provides strong statistical support for the recovery the cave-adapted ecomorphs C. eisenmanae and C. grismeri as the sister lineage to the scansorial forest-adapted ecomorphs C. condorensis and C. leegrismeri. This phylogeny provides the context in which these ecomorphs are morphologically characterized. The majority of newly described species within Cyrtodactylus have come from karst habitats and granite boulder cave-like microhabitats. Although some authors have commented on subtle to notable differences in the morphology and color pattern associated with species from these habitats, none have explicitly presented data necessary to characterize this putative departure from a more generalized, scansorial morphology. To this end, the closely related species of the condorensis group are used to provide a suggested protocol to recover and delimit characters adaptive to a restrictive lifestyle of climbing on flat, rocky substrates in low levels of illumination. Understanding the phylogenetic context in which a morphological shift from a general scansorial species to a rock-adapted species relative to the historical evolution of its environment has conservation and management implications. This is particularly important given that a number of the newly described karst-adapted species from throughout Southeast Asia are threatened with extension because of the ongoing quarrying activities of their habitat.
References
Bauer, A.M., Russell, A.P. & Powell, G.L. (1996) The evolution of locomotor morphology in Rhoptropus (Squamata: Gekkonidae): functional and phylogenetic consideration. African Journal of Herpetology, 45, 8–30.
https://doi.org/10.1080/21564574.1996.9649959Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian Phylogenetics with BEAUti and BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
https://doi.org/10.1093/molbev/mss075Goodman, B.A., Miles, D.B. & Schwarzkopf, L. (2008) Life on the rocks: habitat use drives morphological and performance evolution in lizards. Ecology, 89, 3462–3471.
https://doi.org/10.1890/07-2093.1Grismer, L.L., Belabut, D.M., Quah, E.S.H., Chan, K.O., Wood Jr., P.L. & Hashim, R. (2014a) A new species of karst forest-adapted Bent-toed Gecko (genus Cyrtodactylus) belonging to the C. sworderi complex from a threatened karst forest in Perak, Peninsular Malaysia. Zootaxa, 3755, 434–466.
Grismer, L.L., Wood, Jr., P.L., Anuar S., Davis, H.R., Cobos, A.J. & Murdoch, M.L. (2016b) A new species of karst forest Bent-toed Gecko (genus Cyrtodactylus Gray) not yet threatened by foreign cement companies and a summary of Peninsular Malaysia’s endemic karst forest herpetofauna and the need for its conservation. Zootaxa, 4061, 1–17.
Grismer, L.L., Wood, Jr., P.L., Anuar S., Grismer, M.S., Muin, M.A., Davis, H.R., Aguilar, C., Klaback, R., Cobos, A.J., Aowphol, A. & Sites Jr., J. (2016a) Two new Bent-toed Geckos of the Cyrtodactylus pulchellus complex from Peninsular Malaysia and multiple instances of convergent adaptation to limestone forest ecosystems. Zootaxa, 4105, 401–429.
Grismer, L.L., Wood, Jr., P.L., Chan, K.O., Anuar, S. & Muin, M.A. (2014b) Cyrts in the city: A new Bent-toed Gecko (Genus Cyrtodactylus) is the only endemic species of vertebrate from Batu Caves, Selangor, Peninsular Malaysia. Zootaxa, 3774, 381–394.
Grismer, L.L., Wood Jr., P.L., Anuar, S., Quah, E.S.H., Muin, M.A., Chan, K.O., Sumarli, A.X. & Loredo, A.I. (2015b) Repeated evolution of sympatric, paleoendemic species in closely related, co-distributed lineages of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) across a sky-island archipellago in Peninsular Malaysia. Zoological Journal of the Linnean Society, 174, 859–876.
Grismer, L.L., Wood, Jr., P.L., Ngo, V.T. & Murdoch, M.L. (2015a) The systematics and independent evolution of cave ecomorphology in distantly related clades of Bent-toed Geckos (Genus Cyrtodactylus Gray, 1827) from the Mekong Delta and islands in the Gulf of Thailand. Zootaxa, 3980 (1), 106–126.
http://dx.doi.org/10.11646/zootaxa.3980.1.6Grismer, L.L., Wood, Jr., Thura, M.K, Zin, T., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H.& Ngwe, L. (2017a) Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. ZoologicalJournal of the Linnean Society. [in press]
Grismer, L.L., Wood, Jr., Thura, M.K, Zin, T., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H. & Ngwe, L. (2017b) Phylogenetic taxonomy of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) with descriptions of three new species from Myanmar. Journal of Natural History. [in press]
Grummer, J.A., Bryson, R.W. Jr. & Reeder, T.W. (2014) Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology, 63, 119–133.
https://doi.org/10.1093/sysbio/syt069Heinicke, M.P., Greenbaum, E., Jackman, T.R. & Bauer, A.M. (2011) Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zoologica Scripta, 40, 584–602.
https://doi.org/10.1111/j.1463-6409.2011.00495.xHerrel, A., Meyers, J.J. & Vanhooydonck, B. (2001) Correlations between habitat use and body shape in a phrynosomatid lizard (Urosaurus ornatus): a population-level analysis. Biological Journal of the Linnean Society, 74, 305–314.
https://doi.org/10.1111/j.1095-8312.2001.tb01394.xHuelsenbeck, J.P., Bollback, J.P. & Levine, A.M. (2002) Inferring the root of a phylogenetic tree. Systematic Biology, 51, 332–343.
Huelsenbeck, J. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755.
https://doi.org/10.1093/bioinformatics/17.8.754Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian Inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314.
https://doi.org/10.1126/science.1065889Johnson, M.K., Russell, A.P. & Bauer, A.M. (2005) Locomoter morphometry of the Pachydactylus radiation of lizards (Gekkota: Gekkonidae): a phylogenetically and ecologically informed analysis. Canadian Journal of Zoology, 83, 1511–1524.
https://doi.org/10.1139/z05-112Jombart, T., Devillard, S. & Balloux, F. (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.
https://doi.org/10.1186/1471-2156-11-94Kaiser, H.F. (1960) The application of electronic computers to factor analysis. Education and Psychological Measurement, 20, 141–151.
https://doi.org/10.1177/001316446002000116Kirchberger, P.C., Sefc, K.M., Sturmbauer, C. & Koblmüller, S. (2014) Outgroup effects the root position and tree toplogy in AFLP phylogeny of a rapidly radiating lineage of cichlid fish. Molecular Phylogenetics and Evolution, 70, 57–62.
https://doi.org/10.1016/j.ympev.2013.09.005Kiernan, K. (2011) Monadnaocks of the Mekong delt: character, caves, and evolution. Cave and Karst Science, 38, 71–80.
Lleonart, J., Salat, J. & Torres, G.J. (2000) Removing allometric effects of body size in morphological analysis. Journal of Theoretical Biology, 205, 85–93.
https://doi.org/10.1006/jtbi.2000.2043Losos, J.B. (1990) The evolution of form and function: morphology and locomotor performance in west Indian Anolis lizards. Evolution, 44, 1189–1203.
https://doi.org/10.1111/j.1558-5646.1990.tb05225.xLuu, V.Q., Bonkowski, M., Nguyen, T.Q., Le, M.D., Schneider, N., Ngo, H.T. & Ziegler, T. (2016) Evolution in karst massifs: Cryptic diversity among bent-toed geckos along the Truong Son Range with descriptions of three new species and one new country record from Laos. Zootaxa, 4107 (2), 101–140.
https://doi.org/10.11646/zootaxa.4107.2.1Macey, J. & Schulte, J. (1999) Molecular Phylogenetics, Trna Evolution, and Historical Biogeography in Anguid Lizards and Related Taxonomic Families. Molecular Phylogenetics and Evolution, 12, 250–272.
https://doi.org/10.1006/mpev.1999.0615Minh, Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195.
https://doi.org/10.1093/molbev/mst024Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 2013, New Orleans, LA, pp. 1–8.
https://doi.org/10.1109/gce.2010.5676129Nguyen, VL, Ta, T.K.O. & Tateishi, M. (2000) Late Holocene depositional
environments and coastal evolution of the Mekong River delta, southern Vietnam. Journal of Asian Earth Sciences, 18, 427–439.
Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274.
https://doi.org/10.1093/molbev/msu300Nosil, P. (2012) Ecological Speciation. Oxford University Press, New York, 280 pp.
Rambaut, A. & Drummond, A.J. (2013) TreeAnnotator v1.8.0 MCMC Output Analysis. Available from: http://beast.bio.ed.ac.uk/TreeAnnotator (accessed 28 June 2017)
Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 28 June 2017)
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, B., Larget, L., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) Mr. Bayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology, 61, 539–542.
https://doi.org/10.1093/sysbio/sys029Rosenfeld, J.A., Payne, A. & DeSalle, R. (2012) Random roots and lineage sorting. Molecular Phylogenetics and Evolution, 64, 12–20.
https://doi.org/10.1016/j.ympev.2012.02.029Rota-Stabelli, O. & Telford, M.J. (2008) A multi-criterion approach for the selection of optimal outgrous in phylogeny: recovering some support for Mandibulata over Myriochelata using mitogenomics. Molecular Phylogenetics and Evolution, 48, 103–111.
https://doi.org/10.1016/j.ympev.2008.03.033Rundle, H.D. & Nosil, P. (2005) Ecological speciation. Ecology Letters, 8, 336–352.
https://doi.org/10.1111/j.1461-0248.2004.00715.xSchluter, D. (2001) Ecology and the origin of species. Trends In Ecology & Evolution 16, 372–380.
https://doi.org/10.1016/S0169-5347(01)02198-XSiler, C.D., Oaks, J.R., Esselstyn, J.A., Diesmos, A.C. & Brown, R.M. (2010) Phylogeny and biogeography of Philippine bent–toed geckos (Gekkonidae: Cyrtodactylus) contradict a prevailing model of Pleistocene diversification. Molecular Phylogenetics and Evolution, 55, 699–710.
https://doi.org/10.1016/j.ympev.2010.01.027Tamura, T., Saito, Y., Sieng, S., Ben, B., Kong, M., Choup, S. & Tsukawaki, S. (2007) Depositional facies and radiocarbon ages of a drill core from the Mekong River lowland near Phnom Penh, Cambodia: evidence for tidal sedimentation at the time of Holocene maximum flooding. Journal of Asian Earth Sciences, 29, 585–592.
https://doi.org/10.1016/j.jseaes.2006.03.009Thorpe, R.S. (1975) Quantitative handling of characters useful in snake systematics with particular reference to interspecific variation in the Ringed Snake Natrix natrix (L.). Biological Journal of the Linnean Society, 7, 27–43.
https://doi.org/10.1111/j.1095-8312.1975.tb00732.xThorpe, R.S. (1983) A review of the numerical methods for recognized and analyzing racial differentiation. In: Felsenstein, J. (Ed.), Numerical Taxonomy. Springer-Verlag, Berlin, pp. 404–423.
Turan, C. (1999) A note on the examination of morphometric differentiation among fish populations: The Truss System. Turkish Journal of Zoology, 23, 259–263.
Uetz, P. & Hallermann, J. (2017) The Reptile Database. Electronic Database accessible. Available from: http://www.reptile-database.org (accessed 28 June 2017)
Vanhooydonck, B., Van Damme, R. & Aerts, P. (2000) Ecomorphological correlates of habitat partitioning in Corsican lacertid lizards. Funtional Ecology, 14, 358–368.
https://doi.org/10.1046/j.1365-2435.2000.00430.xVitt, L.J., Caldwell, J.P., Zani, P.A. & Titus, T.A. (1997) The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus. Proceedings of the National Academy of Sciences, 94, 3828–3832.
https://doi.org/10.1073/pnas.94.8.3828Wheeler, W.C. (1990) Nucleic acid sequence phylogeny and random outgroups. Cladistics, 6, 363–367.
Wood, P.L. Jr., Heinicke, M.P., Jackman, T.R. & Bauer, A.M. (2012) Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Molecular Phylogenetics and Evolution, 65, 992–1003.
https://doi.org/10.1016/j.ympev.2012.08.025Zaaf, A. & Van Dammer, R. (2001) Limb proportions in climbing and ground-dwelling geckos (Lepidosauria, Gekkonidae): a phylogenetically informed analysis. Zoomorphology, 121, 43–53.
https://doi.org/10.1007/s004350100044