Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-07-16
Page range: 1–12
Abstract views: 890
PDF downloaded: 4

A new species of bandy-bandy (Vermicella: Serpentes: Elapidae) from the Weipa region, Cape York, Australia

Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St. Lucia, Qld 4067, AUSTRALIA
Department of Biosciences, College of Science, Swansea University, Swansea SA2, 8PP, UK
Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China;
Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; Institute of Biology Leiden (IBL), Leiden University, 2333 BE, Leiden, The Netherlands
Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
Ecotone Flora and Fauna Consultants, PO Box 9, Yungaburra, Qld 4884, Australia
Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
Naturalis Biodiversity Center,Darwinweg 2, Postbus 9517, 2300 RA Leiden, The Netherlands
Venom Evolution Laboratory, School of Biological Sciences, University of Queensland, St. Lucia, Qld 4067, AUSTRALIA
Reptilia Australian Monsoonal Tropics mtDNA taxonomy Vermicella parscauda sp. nov.

Abstract

Bandy-bandies (genus Vermicella) are small (50–100cm) black and white burrowing elapids with a highly specialised diet of blindsnakes (Typhlopidae). There are currently 5 recognized species in the genus, all located in Australia, with Vermicella annulata the most encountered species with the largest distribution. Morphological and mitochondrial analyses of specimens collected from the Weipa area, Cape York, Queensland reveal the existence of a new species, which we describe as Vermicella parscauda sp. nov. Mitochondrial DNA analysis (16S and ND4) and external morphological characteristics indicate that the closest relatives of the new species are not V. annulata, which also occurs on Cape York, but rather species from Western Australia and the Northern Territory (V. intermedia and V. multifasciata) which, like V. parscauda, occupy monsoon habitats. Internasal scales are present in V. parscauda sp. nov., similar to V. annulata, but V. intermedia and V. multifasciata do not have nasal scales. V. parscauda sp. nov. has 55–94 black dorsal bands and mottled or black ventral scales terminating approximately 2/3rds of the body into formed black rings, suggesting that hyper-banding is a characteristic of the tropical monsoon snakes (V. intermedia, V. multifasciata and V. parscauda). The confined locality, potential habitat disruption due to mining activities, and scarcity of specimens indicates an urgent conservation concern for this species.

 

References

  1. Atlas of Living Australia (2016) Available from: http://biocache.ala.org.au/occurrences/search?q=lsid:urn:lsid:biodiversity.org.
    au:afd.taxon:9a028f7f-f12c-4b5b-a8b9-6fc466a087ea#tab_mapView (accessed 30 October 2016)

    Atlas of Living Australia (2017) Available from: http://biocache.ala.org.au/occurrences/d3b0f10e-7f97-48f3-bc6a-8c742bebf15f (accessed 30 August 2017)

    Aubret, F., Maumelat, S., Bradshaw, D., Schwaner, T. & Bonnet, X. (2004) Diet divergence, jaw size and scale counts in two neighbouring populations of tiger snakes (Notechis scutatus). Amphibia-Reptilia, 25, 9–17.
    https://doi.org/10.1163/156853804322992797

    Bowman, D.M.J.S., Brown, G.K., Braby, M.F., Brown, J.R., Cook, L.G., Crisp, M.D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G. & Ladiges, P.Y. (2010) Biogeography of the Australian monsoon tropics. Journal of Biogeography, 37, 201–216.
    https://doi.org/10.1111/j.1365-2699.2009.02210.x

    Clarke, V. & How, R. (1995) Body dimensions in Simoselaps and Vermicella ( Elapidae ): a method for determining sex in natural populations. Records of the Western Australian Museum, 72, 69–72.

    Cogger, H.G. (2014) Reptiles and Amphibians of Australia. 7th Edition. CSIRO Publishing, Melbourne, Victoria, 1033 pp. [pp. 790–937]

    Fox, I.D., Neldner, V.J., Wilson, G.W. & Bannink, P.J. (2001) The Vegetation of the Australian Tropical Savannas. Environmental Protection Agency, Brisbane, pp. 12–209.

    Greenlees, M.J., Webb, J.K., Shine, R., Greenlees, M.J., Webb, J.K. & Shine, R. (2005) Led by the blind : bandy-bandy snakes Vermicella annulata (Elapidae) follow blindsnake chemical trails. American Society of Ichthyologists and Herpetologists, 2005, 184–187.
    https://doi.org/10.1643/CH-04-086R1

    Grundler, M.C. & Rabosky, D.L. (2014) Trophic divergence despite morphological convergence in a continental radiation of snakes. Proceedings of the Royal Society. Biological Sciences, 281, 20140413.
    https://doi.org/10.1098/rspb.2014.0413

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Mentjies, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649.
    https://doi.org/10.1093/bioinformatics/bts199

    Keogh, J.S. (1999) Evolutionary implications of hemipenial morphology in the terrestrial Australian elapid snakes. Zoological Journal of the Linnean Society, 125, 239–278.
    https://doi.org/10.1006/zjls.1997.0163

    Keogh, J.S., Shine, R. & Donnellan, S. (1998) Phylogenetic relationships of terrestrial Australo-Papuan elapid snakes (subfamily Hydrophiinae) based on cytochrome b and 16S rRNA sequences. Molecular Phylogenetics and Evolution, 10, 67–81.
    https://doi.org/10.1006/mpev.1997.0471

    Keogh, J.S. & Smith, S.A. (1996) Taxonomy and natural history of the Australian bandy-bandy snakes (Elapidae: Vermicella) with a description of two new species. Journal of Zoology, London, 240, 677–701.
    https://doi.org/10.1111/j.1469-7998.1996.tb05315.x

    King, R.B. (1989) Sexual dimorphism in snake tail length: sexual selection, natural selection, or morphological constraint? Biological Journal of the Linnean Society, 38, 133–154.
    https://doi.org/10.1111/j.1095-8312.1989.tb01570.x

    Kumar, S., Stecher, G. & Tamura, K. (2016) Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874.
    https://doi.org/10.1093/molbev/msw054

    Lee, J.L., Thompson, A. & Mulcahy, D.G. (2016a) Relationships between Numbers of Vertebrae, Scale Counts, and Body Size, with Implications for Taxonomy in Nightsnakes (Genus: Hypsiglena). Journal of Herpetology, 50, 616–620.
    https://doi.org/10.1670/15-066

    Lee, M., Sanders, K., King, B. & Palci, A. (2016b). Diversification rates and phenotypic evolution in venomous snakes (Elapidae). Royal Society Open Science, 3, 150277.
    https://doi.org/10.1098/rsos.150277

    Maddock, S.T., Ellis, R.J., Doughty, P., Smith, L.A. & Wüster, W. (2015) A new species of death adder (Acanthophis: Serpentes: Elapidae) from north-Western Australia. Zootaxa, 4007 (3), 301–326.
    https://doi.org/10.11646/zootaxa.4007.3.1

    Marin, J., Donnellan, S.C., Hedges, S.B., Puillandre, N., Aplin, K.P., Doughty, P., Hutchinson, M.N., Couloux, A. & Vidal, N. (2013) Hidden species diversity of Australian burrowing snakes (Ramphotyphlops). Biological Journal of the Linnean Society, 110, 427–441.
    https://doi.org/10.1111/bij.12132

    McDowell, S.B. (1970) On the status and relationships of the Solomon Island elapid snakes. Journal of Zoology, London, 161, 145–190.
    https://doi.org/10.1111/j.1469-7998.1970.tb02032.x

    Price, M.N., Dehal, P.S. & Arkin, A.P. (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One, 5, e9490.
    https://doi.org/10.1371/journal.pone.0009490

    Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.
    https://doi.org/10.1093/sysbio/sys029

    Sanders, K.L., Lee, M.S.Y., Leys, R., Foster, R. & Scott Keogh, J. (2008) Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (Hydrophiinae): Evidence from seven genes for rapid evolutionary radiations. Journal of Evolutionary Biology, 21, 682–695.
    https://doi.org/10.1111/j.1420-9101.2008.01525.x

    Sanders, K.L., Rasmussen, A.R., Elmberg, J., Blias, P., Lee, M.S.Y. & Fry, B.G. (2012) Aipysurus mosaicus, a new species of egg-eating sea snake (Elapidae: Hydrophiinae), with a redescription of Aipysurus eydouxii (Grey, 1849). Zootaxa, 3431, 1–18.

    Shine, R. (1980) Reproduction, Feeding and Growth in the Australian Burrowing Snake Vermicella annulata. Journal of Herpetology, 14, 71–77.
    https://doi.org/10.2307/1563878

    Shine, R. & Keogh, J.S. (1996) Food Habits and Reproductive Biology of the Endemic Melanesian Elapids: Are Tropical Snakes Really Different? Journal of Herpetology, 30, 238–247.
    https://doi.org/10.2307/1565515

    Ukuwela, K.D.B., de Silva, A., Mumpuni, Fry, B.G., Lee, M.S.Y. & Sanders, K.L. (2013) Molecular evidence that the deadliest sea snake Enhydrina schistosa (Elapidae: Hydrophiinae) consists of two convergent species. Molecular Phylogenetics and Evolution, 66, 262–269.

    https://doi.org/10.1016/j.ympev.2012.09.031

    Wells, R.W. & Wellington, C.R. (1983) A classification of the Amphibia and Reptilia of Australia. Australian Journal of Herpetology, 1, 1–61.