Abstract
A phylogenetic taxonomic analysis indicates that a newly discovered population of Cyrtodactylus from the vicinity of Ywangan Town in the Shan Hills, Shan State, Myanmar is a new species (C. ywanganensis sp. nov.) and the earliest diverging member of the linnwayensis group within the previously defined Indochinese clade. The DIVALIKE+J model of a BioGeoBEARS biogeographic analysis indicates that the Indochinese clade evolved in the Shan Hills and Salween Basin of eastern Myanmar and dispersed into Indochina on at least three separate occasions from 18.6–13.4 mya. Once there, uplift of the Tenasserim Mountains and Thai Highlands created the intermedius group, the oldhami group, and C. tigroides of western and southern Thailand which form sister lineages to the linnwayensis group, yathepyanensis group, and the sinyineensis group, respectively, of eastern Myanmar. Diverging lineages within the Indochinese clade highlight the importance of the Thai Highlands and Tenasserim Mountains in that group’s evolution and speciation. The discovery of C. ywanganensis sp. nov. in karstic habitats in the Shan Hills continues to underscore the unrealized karst-associated herpetological diversity of this vast, relatively unexplored, upland region and the need for additional field studies.
References
Agarwal, I, Bauer, A.M., Jackman, T.R. & Karanth, K.P. (2014) Insights into Himalayan biogeography from geckos: a molecular phylogeny of Cyrtodactylus (Squamata: Gekkonidae). Molecular Phylogenetics and Evolution, 80, 145–155.
https://doi.org/10.1016/j.ympev.2014.07.018Ali, J.R. & Aitchison, J.C. (2008) Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian subcontinent from the Middle
Jurassic through latest Eocene (166-35 Ma). Earth Science Review, 88, 145–66.
https://doi.org/10.1016/j.earscirev.2008.01.007Barr, S.M. & MacDonald, A.S. (1991) Toward a Late Paleozoic-Early Mesozoic tectonic model for Thailand. Journal of Thai Geoscience, 1, 11–22.
https://doi.org/10.2110/pec.74.22.0083Brandley, M.C., Wang, Y., Guo, X., Nieto Montes de Oca, A., Feria-Ortiz, M., Hikida, T. & Ota, H. (2011) Accommodating heterogenous rates of evolution in molecular divergence dating methods: an example using intercontinental dispersal of Plestiodon (Eumeces) lizards. Systematic Biology, 60, 3–15.
https://doi.org/10.1093/sysbio/syq045Carranza, S., Arnold, E.N., Mateo, J.A. & Lopez-Jurado, L.F. (2000) Long-distance colonization and radiation in gekkonid lizards, Tarentola (Reptilia: Gekkonidae), revealed by mitochondrial DNA sequences. Proceedings of the Royal Society B: Biological Sciences, 267, 637–649.
https://doi.org/10.1098/rspb.2000.1050Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian Phylogenetics with BEAUti and BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.
https://doi.org/10.1093/molbevFuchs, J., Ericson, P.G.P. & Pasquet, E. (2008) Mitochondrial phylogeographic structure of the white-browed piculet (Sasia ochracea): cryptic genetic differentiation and endemism in Indochina. Journal of Biogeography, 35, 565–575.
https://doi.org/10.1111/j.1365-2699.2007.01811.xGrismer, J.J., Schulte, II, J.A., Alexander, A., Wagner, P., Travers, S., Buehler, M.D., Welton, L.J. & Brown, R.M. (2016) The Eurasin invasion: phylogenomic data reveal multiple Southeast Asian origins for Indian Dragon Lizards. BMC Evolutionary Biology, 16, 43.
https://doi.org/10.1186/s12862-016-0611-6Grismer, L.L., Wood, Jr., P.L., Anuar, S., Quah, E.S.H., Muin, M.A., Chan, K.O., Sumarli, A.X. & Loredo, A.I. (2015) Repeated evolution of sympatric, palaeoendemic species in closely related, co-distributed lineages of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) across a sky-island archipelago in Peninsular Malaysia. Zoological Journal of the Linnean Society, 174, 859–876.
https://doi.org/10.1111/zoj.12254Grismer, L.L., Wood. Jr., P.L., Thura, M.K., Zin, T., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H. & Ngwe, L. (2017a) Twelve new species of Cyrtodactylus Gray (Squamata: Gekkonidae) from isolated limestone habitats in east-central and southern Myanmar demonstrate high localized diversity and unprecedented microendemism. Zoological Journal of the Linnean Society, 182, 862–959.
https://doi.org/10.1093/zoolinnean/zlx057Grismer, L.L., Wood, Jr., P.L., Thura, M.K., Zin, T., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Lin, A., Kyaw, H. & Ngwe L. (2017b) Phylogenetic taxonomy of Hemiphyllodactylus Bleeker, 1860 (Squamata: Gekkonidae) with descriptions of three new species from Myanmar. Journal of Natural History, 52, 881–915.
https://doi.org/10.1080/00222933.2017.1367045Grismer, L.L., Wood, Jr., P.L., Thura, M.K., Zin, T., Quah, E.S.H., Murdoch, M.L., Grismer, M.S., Herr, M.W., Lin A. & Kyaw, H. (2018) Three more new species of Cyrtodactylus (Squamata: Gekkonidae) from the Salween Basin of eastern Myanmar underscores the urgent need for the conservation of karst habitats. Journal of Natural History, 52, 1243–1294.
https://doi.org/10.1080/00222933.2018.1449911Hall, R. (2013) The paleogeography of Sundaland and Wallacea since the Late Jurassic. Journal of Limnology, 72, 1–17.
https://doi.org/10.4081/jlimnol.2013.s2.e1Heinicke, M.P., Greenbaum, E., Jackman, T.R. & Bauer, A.M. (2011b) Phylogeny of a trans-Wallacean radiation (Squamata, Gekkonidae, Gehyra) supports a single early colonization of Australia. Zoologica Scripta, 40, 584–602.
https://doi.org/10.1111/j.1463-6409.2011.00495.xHuelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001) Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology. Science, 294, 2310–2314.
https://doi.org/10.1126/science.1065889Hutchison, C.S. (2007) Geological Evolution of South-East Asia. Second edition. Geological Society of Malaysia, Kuala Lumpur, 433 pp.
Jombart, T., Devillard, S. & Balloux, F. (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.
https://doi.org/10.1186/1471-2156-11-94Katoh, M. & Kuma, M. (2002) MAFTT: a novel method for rapid sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.
https://doi.org/10.1093/nar/gkf436Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.
https://doi.org/10.1093/bioinformatics/bts199Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Moleculat evolutionary genetics analaysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-–1874.
https://doi.org/10.1093/molbev/msw054Landis, M., Matzke, N.J., Moore, B.R. & Huelsenbeck, J.P. (2013) Bayesian analysis of biogeography when the number of areas is large. Systematic Biology, 62, 789–804.
https://doi.org/10.1093/sysbio/syt040Maddison, W.P. & Maddison, D.R. (2015) Mesquite: a modular system for evolutionary analysis. Version 3.04. Available from: http://mesquiteproject.org (accessed 19 June 2018)
Macey, J.J., Larson, A., Ananjeva, N.B., Fang, Z. & Papenfuss, T.J. (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Molecular Biology and Evolution, 14, 91–104.
https://doi.org/10.1093/oxfordjournals.molbev.a025706Matzke, N.J. (2013) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers in Biogeography, 5, 242–248.
https://doi.org/10.1093/sysbio/syu056Matzke, N.J. (2014) Model selection in historical biogeography reveals that founder-effect speciation is a crucial process in island clades. Systematic Biology, 63, 1–21.
https://doi.org/10.1093/sysbio/syu056Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, 14 November 2010, pp. 1–8.
https://doi.org/10.1109/GCE.2010.5676129Minh, Q., Nguyen, M.A.T. & von Haeseler, A. (2013) Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution, 30, 1188–1195.
https://doi.org/10.1093/molbev/mst024Nguyen, L.-T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna. Available from: http://www.R-project.org (accessed 1 December 2016)
Rambaut, A. & Drummond, A.J. (2013) TreeAnnotator. Version 1.8.0. MCMC Output Analysis. Available from: http://beast.community/ (accessed 19 June 2018)
Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1.6. Available from: http://beast.community/ (accessed 19 June 2018)
Ree, R.H. & Sanmartín, I. (2018) Conceptual and statistical problems with the DEC+J model of founder-event speciation and its comparison with DEC via model selection. Journal of Biogeography, 2018, 1–9.
https://doi.org/10.1111/jbi.13173Ridd, M.F. (2009) The Phuket Terrane: a Late Paleozoic rift at the margin of Sibumasa. Journal of Asian Earth Science, 36, 238–251.
https://doi.org/10.1016/j.jseaes.2009.06.006Ronquist, F. (1997) Dispersal–vicariance analysis: a new approach to the quantification of historical biogeography. Systematic Biology, 46, 195–203.
https://doi.org/10.1093/sysbio/46.1.195Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, B., Larget, L., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) Mr. Bayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology, 61, 539–542.
https://doi.org/10.1093/sysbio/sys029Ree, R.H. & Smith, S.A. (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Systematic Biology, 57, 4–14.
https://doi.org/10.1080/10635150701883881Sabaj, M.H. (2016) Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Version 6.5 (16 August 2016). American Society of Ichthyologists and Herpetologists, Washington, D.C. Electronically accessible. Available from: http://www.asih.org/ (accessed 19 June 2018)
Sang, S.N., Yang ,J.-X., Le, T.-N.T., Nguyen, L.T., Orlov, N.L., Hoang, C.V., Nguyen, T.Q., Jin, J.-Q., Rao, D.-Q., Hoang, T.N., Che. J., Murphy, R.W. & Zhang, Y.-P. (2014) DNA barcoding of Vietnamese bent-toed geckos (Squamata: Gekkonidae: Cyrtodactylus) and the description of a new species. Zootaxa, 3784 (1), 48–66. https://doi.org/10.11646/zootaxa.3784.1.2
Sone, M. & Metcalfe, I. (2008) Parallel Tethyan sutures in mainland Southeast Asia: New insights for Paleo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340, 166–179.
https://doi.org/10.1016/j.crte.2007.09.008Upton, D.R., Bristow, C.S. & Hurford, A.J. (1995) The denudational history of western Thailand using apatite fission track analysis: implications for the tectonic models of SE Asia. Journal of Geology, Geological Survey of Vietnam, Hanoi, B, 322.
Upton, D.R., Bristow, C.S., Hurford, A.J. & Carter, A. (1997) Tertiary tectonic denudation in Northwestern Thailand: provisionary results from apatite fission track analysis. Proceedings of the International Conference of Stratigraphy and Tectonic Evolution in Southeast Asia and the South Pacific and Associated Meeting of the IGCP 359 and IGCP 383, Bangkok, Thailand, 1, 421–431.
Wilcox, T.P., Zwickl, D.J., Heath, T.A. & Hillis, D.M. (2002) Phylogenetic relationships of the Dwarf Boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Molecular Phylogenetics and Evolution, 25, 361–371.
https://doi.org/10.1016/S1055-7903(02)00244-0Wood, Jr., P.L., Heinicke, M.P., Jackman, T.R. & Bauer, A.M. (2012) Phylogeny of bent-toed geckos (Cyrtodactylus) reveals a west to east pattern of diversification. Molecular Phylogenetics and Evolution, 65, 992–1003.
https://doi.org/10.1016/j.ympev.2012.08.025Zamudio, K.R., Jones, K.B. & Ward, R.H. (1997) Molecular systematicsof short-horned lizards: biogeography and taxonomy of a widespread species complex. Systematic Biology, 46, 284–305.
https://doi.org/10.1093/sysbio/46.2.284