Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-09-26
Page range: 401–425
Abstract views: 241
PDF downloaded: 8

Phylogenetic differentiation and taxonomic consequences in the Saurodactylus brosseti species complex (Squamata: Sphaerodactylidae), with description of four new species

Division of Evolutionary Biology, Zoological Institute, Technical University of Braunschweig, Mendelssohnstr. 4, 38106 Braunschweig, Germany. State Natural History Museum, Gaußstr. 22, 38106 Braunschweig,Germany.
Waldemar-Becké-Platz 5, 27568 Bremerhaven,Germany.
State Natural History Museum, Gaußstr. 22, 38106 Braunschweig,Germany.
Reptilia Saurodactylus splendidus sp. nov. S. harrisii sp. nov. S. slimanii sp. nov. S. elmoudenii sp. nov. phylogeny species complex taxonomy

Abstract

We divide Saurodactylus brosseti into five species, based on molecular and morphological characteristics. Phylogenetic analysis of two mitochondrial markers (ND4 and 12S rRNA) reveals five separately evolving lineages (clades) in the S. brosseti species complex. Each can be assigned to a particular geographical range within the distribution area in Morocco: North, South, Anti-Atlas, East and Southeast. A dichotomous key for all species within the genus Saurodactylus is presented. Despite the high level of color pattern variation among and within the northern, southern, Anti-Atlas and eastern clades, the southeastern lineage shows a unique coloration which is not found in other clades. The ecological traits of the southeastern clade seem to differ from those of the other four lineages since it is basically associated with Acacia species. Like the relictual ecosystem characterized by these trees, it appears to be highly threatened by extinction.

 

References

  1. Beddek, M., Zenboudji-Beddek, S., Geniez, P., Fathalla, R., Sourouille, P., Arnal, V., Dellaoui, B., Koudache, F., Telailia, S., Peyre, O. & Crochet, P.A. (2018) Comparative phylogeography of amphibians and reptiles in Algeria suggests common causes for the east-west phylogeographic breaks in the Maghreb. PloS ONE, 13 (8), e0201218.

    https://doi.org/10.1371/journal.pone.0201218

    Blérot, P. & Mhirit, O. (1999) Le Grand Livre de la Forêt Marocaine. Mardaga, Sprimont, 280 pp.

    Bons, J. & Pasteur, G. (1957) Nouvelles remarques sur les saurodactyles, avec description de Saurodactylus mauritanicus brosseti n. subsp. Bulletin de la Société des Sciences Naturelles et Physiques du Maroc, 37, 175–195.

    Bons, J. (1959) Les lacertiliens du sud-ouest marocain. Travaux de l’Institut Scientifique Chérifien, Rabat, Série Zoologie, 18, 1–130.

    Bons, J. (1967) Recherches sur la Biogéographie et la Biologie des Amphibiens et des Reptiles du Maroc. Doctoral Thesis, University of Montpellier, Montpellier, 321 pp.

    Bons, J. & Geniez, P. (1996) Amphibiens et Reptiles du Maroc (Sahara Occidental Compris) Atlas Biogéographique. Asociación Herpetológica Española, Barcelona, 319 pp.

    De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56 (5), 879–886.

    https://doi.org/10.1080/10635150701701083

    Hewitt, G.M. (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Molecular Ecology, 10, 537–549.

    https://doi.org/10.1046/j.1365-294x.2001.01202.x

    Joger, U. (1984) Taxonomische Revision der Gattung Tarentola (Reptilia: Gekkonidae). Bonner zoologische Beiträge, 35, 129–174.

    Joger, U. (2003) Reptiles and amphibians of southern Tunisia. Kaupia, Darmstädter Beiträge zur Naturgeschichte, 12, 71–88.

    Joger, U. & Bshaenia, I. (2010) A new Tarentola subspecies (Reptilia: Gekkonidae) endemic to Tunisia. Bonn Zoological Bulletin, 57 (2), 267–274.

    Joger, U., Slimani, T., El Mouden, H. & Geniez, P. (2006) Saurodactylus brosseti. The IUCN Red List of Threatened Species, 2006, e.T61567A12517267 (accessed 5 February 2019)

    https://doi.org/10.2305/IUCN.UK.2006.RLTS.T61567A12517267.en

    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773.

    https://doi.org/10.1093/molbev/msw260

    Lyra, M.L., Joger, U., Schulte, U., Slimani, T., El Mouden, H., Bouazza, A., Künzel, S., Lemmon, A. R., Moriarty Lemmon, E. & Vences, M. (2017) The mitochondrial genomes of Atlas Geckos (Quedenfeldtia): Mitogenome assembly from transcriptomes and anchored hybrid enrichment datasets. Mitochondrial DNA Part B, 2 (1), 356–358.

    https://doi.org/10.1080/23802359.2017.1339212

    Meek, R. (2008) Retreat site characteristics and body temperatures of Saurodactylus brosseti in Morocco. Bulletin de la Société Herpétologique de France, 128, 41–48.

    Mendes, J., Harris, D.J., Carranza, S. & Salvi, D. (2016) Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees. Molecular Phylogenetics and Evolution, 100, 254–267.

    https://doi.org/10.1016/j.ympev.2016.04.016

    Moritz, C. (1994) Defining ‘evolutionary significant units’ for conservation. Trends in Ecology and Evolution, 9 (10), 373–374.

    https://doi.org/10.1016/0169-5347(94)90057-4

    Nogales, M., Lopez, M., Jimenez-Asensio, J., Larruga, J. M., Hernandez, M. & Gonzalez, P. (1998) Evolution and biogeography of the genus Tarentola.(Sauria: Gekkonidae) in the Canary Islands, inferred from mitochondrial DNA sequences. Journal of Evolutionary Biology, 11, 481–494.

    https://doi.org/10.1007/s000360050101

    Ramírez-Reyes, T. & Flores-Villela, O. (2018) Taxonomic changes and description of two new species for the Phyllodactylus lanei complex (Gekkota: Phyllodactylidae) in Mexico. Zootaxa, 4407 (2), 151–190.

    https://doi.org/10.11646/zootaxa.4407.2.1

    Rato, C., Carranza, S. & Harris, D.J. (2012) Evolutionary history of the genus Tarentola (Gekkota: Phyllodactylidae) from the Mediterranean Basin, using multilocus sequence data. BMC Evolutionary Biology, 12 (14), 1–12.

    https://doi.org/10.1186/1471-2148-12-14

    Roman, B. (1972) Deux sous-espèces de la vipère Echis carinatus (Schneider) dans les territoires de la Haute-Volta et du Niger: Echis carinatus ocellatus Stemmler, Echis carinatus leucogaster ssp. n. Notes et documents Voltaiques, 5 (4), 1–11.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542.

    https://doi.org/10.1093/sysbio/sys029

    Rosado, D., Rato, C., Salvi, D. & Harris, D.J. (2017) Evolutionary history of the Morocco lizard-fingered geckos of the Saurodactylus brosseti complex. Evolutionary Biology, 44 (3), 386–400.

    https://doi.org/10.1007/s11692-017-9417-8

    Salvi, D., Schembri, P.J., Sciberras, A. & Harris, D.J. (2014) Evolutionary history of the Maltese wall lizard Podarcis filfolensis: Insights on the ‘Expansion-Contraction’ model of the Pleistocene biogeography. Molecular Ecology, 23, 1167–1187. https://doi.org/10.1111/mec.12668

    Sambrook, J., Fritsch, E.F. & Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 1626 pp.

    Schleich, H.H., Kästle, W. & Kabisch, K. (1996) Amphibians and Reptiles of North Africa. Koeltz, Koenigstein, [4] + 629 pp.

    Silvestro, D. & Michalak, I. (2012) raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution, 12, 335–337.

    https://doi.org/10.1007/s13127-011-0056-0

    Shoemaker, J.S. & Fitch, W.M. (1989) Evidence from nuclear sequences that invariable sites should be considered when sequence divergence is calculated. Molecular Biology and Evolution, 6 (3), 270–289.

    https://doi.org/10.1093/oxfordjournals.molbev.a040550

    Tamar, K., Carranza, S., Sindaco, R., Moravec, J. & Meiri, S. (2014) Systematics and phylogeography of Acanthodactylus schreiberi and its relationships with Acanthodactylus boskianus (Reptila: Squamata: Lacertidae). Zoological Journal of the Linnean Society, 172 (3), 720–739.

    https://doi.org/10.1111/zoj.12170

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    https://doi.org/10.1093/molbev/mst197

    Tavaré, S. (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. American Mathematical Society: Lectures on Mathematics in the Life Sciences, 17, 57–86.

    Yang, Z. (1994) Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. Journal of Molecular Evolution, 39, 306–314.

    https://doi.org/10.1007/BF00160154