Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2019-10-03
Page range: 577–595
Abstract views: 230
PDF downloaded: 109

Reply to Andrew Brower’s critique of the evidence for hybridization among Heliconius butterfly species in the wild

Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge MA 02138, USA.
Lepidoptera

Abstract

Andrew Brower recently published a long article in this journal that seeks to dismantle evidence for hybridization between species of Heliconius butterflies. The main evidence that Brower criticizes here is given in two papers published by my colleagues and myself in 2007. In this reply, I briefly defend our evidence, and at greater length provide additional background information to help establish the credibility of the evidence even more firmly than previously.

 

References

  1. Ackery, P.R. & Smiles, R.L. (1976) An illustrated list of the type-specimens of the Heliconiinae (Lepidoptera: Nymphalidae) in the British Museum (Natural History). Bulletin of the British Museum (Natural History), Entomology, 32, 171–214.

    Arias, C.F., Giraldo, N., McMillan, W.O., Lamas, G., Jiggins, C.D. & Salazar, C. (2017) A new subspecies in a Heliconius butterfly adaptive radiation (Lepidoptera: Nymphalidae). Zoological Journal of the Linnean Society, 180, 805–818.

    https://doi.org/10.1093/zoolinnean/zlw010

    Beltrán, M.S., Jiggins, C.D., Bull, V., Linares, M., Mallet, J., McMillan, W.O. & Bermingham, E. (2002) Phylogenetic discordance at the species boundary: comparative gene genealogies among rapidly radiating Heliconius butterflies. Molecular Biology and Evolution, 19, 2176–2190.

    https://doi.org/10.1093/oxfordjournals.molbev.a004042

    Brower, A.V.Z. (2011) Hybrid speciation in Heliconius butterflies? A review and critique of the evidence. Genetica, 139, 589–609.

    https://doi.org/10.1007/s10709-010-9530-4

    Brower, A.V.Z. (2018a) Alternative facts: a reconsideration of putatively natural interspecific hybrid specimens in the genus Heliconius (Lepidoptera: Nymphalidae). Zootaxa, 4499 (1), 1–87.

    https://doi.org/10.11646/zootaxa.4499.1.1

    Brower, A.V.Z. (2018b) Paradigms and paradoxes of Heliconius butterflies. Systematics and Biodiversity, 17, 88–91.

    https://doi.org/10.1080/14772000.2018.1476417

    Brown, K.S. & Fernández Yepez, F. (1985) Los Heliconiini (Lepidoptera, Nymphalidae) de Venezuela. Boletín de Entomología Venezolana, Nueva Serie, 3, 29–76.

    Brown, K.S. & Mielke, O.H.H. (1972) The heliconians of Brazil (Lepidoptera: Nymphalidae). Part II. Introduction and general comments, with a supplementary revision of the tribe. Zoologica, New York, 57, 1-40.

    Bull, V., Beltrán, M., Jiggins, C.D., McMillan, W.O., Bermingham, E. & Mallet, J. (2006) Polyphyly and gene flow between non-sibling Heliconius species. BMC Biology, 4, 11.

    https://doi.org/10.1186/1741-7007-4-11

    Challis, R.J., Kumar, S., Dasmahapatra, K.K., Jiggins, C.D. & Blaxter, M. (2016) Lepbase: the lepidopteran genome database. bioRxiv, 056994, 15 pp.

    https://doi.org/10.1101/056994

    Choi, Y., Chan, A.P., Kirkness, E., Telenti, A. & Schork, N.J. (2018) Comparison of phasing strategies for whole human genomes. PLoS Genetics, 14, e1007308.

    https://doi.org/10.1371/journal.pgen.1007308

    Dasmahapatra, K.K., Silva, A., Chung, J.-W. & Mallet, J. (2007) Genetic analysis of a wild-caught hybrid between non-sister Heliconius butterfly species. Biology Letters, 3, 660–663.

    https://doi.org/10.1098/rsbl.2007.0401

    Davison, A., McMillan, W.O., Griffin, A.S., Jiggins, C.D. & Mallet, J.L.B. (1999) Behavioural and physiological adaptation between two parapatric Heliconius species (Lepidoptera: Nymphalidae). Biotropica, 31, 661–668.

    https://doi.org/10.1111/j.1744-7429.1999.tb00415.x

    de la Maza, R. (1991) Mariposas Méxicanas. Fondo de Cultura Económica S.A. de C.V., México, D.F., 302 pp.

    Descimon, H. & Mast de Maeght, J. (1984) Semispecies relationships between Heliconius erato cyrbia Godt. and H. himera Hew. in southwestern Ecuador. Journal of Research on the Lepidoptera, 22, 229–239.

    Drès, M. & Mallet, J. (2002) Host races in plant-feeding insects and their importance in sympatric speciation. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 357, 471–492.

    https://doi.org/10.1098/rstb.2002.1059

    Emelianov, I., Mallet, J. & Baltensweiler, W. (1995) Genetic differentiation in the larch budmoth Zeiraphera diniana (Lepidoptera: Tortricidae): polymorphism, host races or sibling species? Heredity, 75, 416–424.

    https://doi.org/10.1038/hdy.1995.154

    Emelianov, I., Marec, F. & Mallet, J. (2004) Genomic evidence for divergence with gene flow in host races of the larch budmoth. Proceedings of the Royal Society of London Series B: Biological Sciences, 271, 97–105.

    https://doi.org/10.1098/rspb.2003.2574

    Eratosignis (2013a) Introgression: Brower’s criticisms. Part I. In: heliconius.org, Cambridge, UK. Available from: https://www.heliconius.org/2013/introgression-browers-criticisms-part-i/ (accessed 3 June 2019)

    Eratosignis (2013b) Introgression: Brower’s criticisms. Part II. In: heliconius.org, Cambridge, UK. Available from: https://www.heliconius.org/2013/introgression-browers-criticisms-part-ii/ (accessed 3 June 2019)

    Flot, J.-F., Tillier, A., Samadi, S. & Tillier, S. (2006) Phase determination from direct sequencing of length-variable DNA regions. Molecular Ecology Notes, 6, 627–630.

    https://doi.org/10.1111/j.1471-8286.2006.01355.x

    Garzón-Orduña, I.J. & Brower, A.V.Z. (2018) Quantified reproductive isolation in Heliconius butterflies: implications for introgression and hybrid speciation. Ecology and Evolution, 8, 1186–1195.

    https://doi.org/10.1002/ece3.3729

    Gilbert, L.E. (1984) The biology of butterfly communities. In: Vane-Wright, R.I. (Ed.), The Biology of Butterflies. Academic Press, London, pp. 41–54.

    Gilbert, L.E. (2003) Adaptive novelty through introgression in Heliconius wing patterns: evidence for a shared genetic “toolbox” from synthetic hybrid zones and a theory of diversification. In: Boggs, C.L., Ehrlich, P.R. & Watt, W.B. (Eds.), Ecology and Evolution Taking Flight: Butterflies as Model Systems. University of Chicago Press, Chicago, pp. 281–318, plates 14.1–14.8.

    Giraldo, N., Salazar, C., Jiggins, C.D., Bermingham, E. & Linares, M. (2008) Two sisters in the same dress: Heliconius cryptic species. BMC Evolutionary Biology, 8, 324.

    https://doi.org/10.1186/1471-2148-8-324

    Grant, P.R. & Grant, B.R. (1992) Hybridization of bird species. Science, 256, 193–197.

    https://doi.org/10.1126/science.256.5054.193

    Heliconius Genome Consortium. (2012) Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature, London, 487, 94–98.

    https://doi.org/10.1038/nature11041

    Jay, P., Whibley, A., Frézal, L., de Cara, M.Á.R., Nowell, R.W., Mallet, J., Dasmahapatra, K.K. & Joron, M. (2018) Supergene evolution triggered by the introgression of a chromosomal inversion. Current Biology, 28, 1839–1845.

    https://doi.org/10.1016/j.cub.2018.04.072

    Jiggins, C.D. & McMillan, W.O. (1997) The genetic basis of an adaptive radiation: warning colour in two Heliconius species. Proceedings of the Royal Society of London Series B: Biological Sciences, 264, 1167–1175.

    https://doi.org/10.1098/rspb.1997.0161

    Jiggins, C.D., McMillan, W.O., King, P. & Mallet, J. (1997a) The maintenance of species differences across a Heliconius hybrid zone. Heredity, 79, 495–505.

    https://doi.org/10.1038/hdy.1997.189

    Jiggins, C.D., McMillan, W.O. & Mallet, J.L.B. (1997b) Host plant adaptation has not played a role in the recent speciation of Heliconius himera and Heliconius erato (Lepidoptera: Nymphalidae). Ecological Entomology, 22, 361–365.

    https://doi.org/10.1046/j.1365-2311.1997.00067.x

    Jiggins, C.D., McMillan, W.O., Neukirchen, W. & Mallet, J. (1996) What can hybrid zones tell us about speciation? The case of Heliconius erato and H. himera (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 59, 221–242.

    https://doi.org/10.1111/j.1095-8312.1996.tb01464.x

    Kronforst, M.R., Young, L.G., Blume, L.M. & Gilbert, L.E. (2006) Multilocus analysis of admixture and introgression among hybridizing Heliconius butterflies. Evolution, 60, 1254–1268.

    https://doi.org/10.1111/j.0014-3820.2006.tb01203.x

    Lamas, G. & Jiggins, C.D. (2017) Taxonomic list. In: Jiggins, C.D. (Ed.) The Ecology and Evolution of Heliconius Butterflies. Oxford University Press, Oxford, pp. 214–244.

    https://doi.org/10.1093/acprof:oso/9780199566570.003.0012

    Mallet, J. (1995) A species definition for the Modern Synthesis. Trends in Ecology and Evolution, 10, 294–299.

    https://doi.org/10.1016/0169-5347(95)90031-4

    Mallet, J., Beltrán, M., Neukirchen, W. & Linares, M. (2007) Natural hybridization in heliconiine butterflies: the species boundary as a continuum. BMC Evolutionary Biology, 7, 28.

    https://doi.org/10.1186/1471-2148-7-28

    Mallet, J. & Jackson, D.A. (1980) The ecology and social behaviour of the Neotropical butterfly Heliconius xanthocles Bates in Colombia. Zoological Journal of the Linnean Society, 70, 1–13.

    https://doi.org/10.1111/j.1096-3642.1980.tb00845.x

    Mallet, J., McMillan, W.O. & Jiggins, C.D. (1998a) Estimating the mating behavior of a pair of hybridizing Heliconius species in the wild. Evolution, 52, 503–510.

    https://doi.org/10.1111/j.1558-5646.1998.tb01649.x

    Mallet, J., McMillan, W.O. & Jiggins, C.D. (1998b) Mimicry and warning color at the boundary between races and species. In: Howard, D.J. & Berlocher, S.H. (Eds.) Endless Forms: Species and Speciation. Oxford University Press, New York, pp. 390–403.

    Mallet, J. & Neukirchen, W. (1997). Wild-caught hybrids between Heliconius species. In: Wayback Machine, web.archive.org. Available from: https://web.archive.org/web/19971221063652/http://abacus.gene.ucl.ac.uk/jim/hybtab.html (accessed 3 June 2019)

    Martin, S.H., Dasmahapatra, K.K., Nadeau, N.J., Salazar, C., Walters, J.R., Simpson, F., Blaxter, M., Manica, A., Mallet, J. & Jiggins, C.D. (2013) Genome-wide evidence for speciation with gene flow in Heliconius butterflies. Genome Research, 23, 1817–1828.

    https://doi.org/10.1101/gr.159426.113

    Mavárez, J., Salazar, C., Bermingham, E., Salcedo, C., Jiggins, C.D. & Linares, M. (2006) Speciation by hybridization in Heliconius butterflies. Nature, London, 441, 868–871.

    https://doi.org/10.1038/nature04738

    McMillan, W.O., Jiggins, C.D. & Mallet, J. (1997) What initiates speciation in passion-vine butterflies? Proceedings of the National Academy of Sciences of the United States of America, 94, 8628–8633.

    https://doi.org/10.1073/pnas.94.16.8628

    Mérot, C., Mavárez, J., Evin, A., Dasmahapatra, K.K., Mallet, J., Lamas, G. & Joron, M. (2013) Genetic differentiation without mimicry shift in a pair of hybridizing Heliconius species (Lepidoptera: Nymphalidae). Biological Journal of the Linnean Society, 109, 830–847.

    https://doi.org/10.1111/bij.12091

    Naisbit, R.E., Jiggins, C.D. & Mallet, J. (2001) Disruptive sexual selection against hybrids contributes to speciation between Heliconius cydno and H. melpomene. Proceedings of the Royal Society of London Series B: Biological Sciences, 268, 1849–1854.

    https://doi.org/10.1098/rspb.2001.1753

    Naisbit, R.E., Jiggins, C.D. & Mallet, J. (2003) Mimicry: developmental genes that contribute to speciation. Evolution and Development, 5, 269–280.

    https://doi.org/10.1046/j.1525-142X.2003.03034.x

    Rosser, N., Queste, L., Cama, B., Edelman, N., Mann, F., Morris, J., Segami, C., Velado, P., Schulz, S., Mallet, J. & Dasmahapatra, K.K. (2019) Geographic contrasts between pre- and post-zygotic barriers are consistent with reinforcement in Heliconius butterflies. Evolution, 73 (9): 1821–1838.

    https://doi.org/10.1111/evo.13804

    Salazar, J.A. (2002) II. Los Papilionidae de la colección E.W. Schmidt-Mumm, Bogotá, Colombia (Lepidoptera: Papilionidae). SHILAP, Revista de Lepidopterología, 30, 301–310.

    Van Belleghem, S.M., Rastas, P., Papanicolaou, A., Martin, S.H., Arias, C.F., Supple, M.A., Hanly, J.J., Mallet, J., Lewis, J.J., Hines, H.M., Ruiz, M., Salazar, C., Linares, M., Moreira, G.R.P., Jiggins, C.D., Counterman, B.A., McMillan, W.O. & Papa, R. (2017) Complex modular architecture around a simple toolkit of wing pattern genes. Nature Ecology & Evolution, 1, 0052.

    https://doi.org/10.1038/s41559-016-0052

    Wallbank, R.W.R., Baxter, S.W., Pardo-Diaz, C., Hanly, J.J., Martin, S.H., Mallet, J., Dasmahapatra, K.K., Salazar, C., Joron, M., Nadeau, N., McMillan, W.O. & Jiggins, C.D. (2016) Evolutionary novelty in a butterfly wing pattern through enhancer shuffling. PLoS Biology, 14, e1002353.

    https://doi.org/10.1371/journal.pbio.1002353

    Whinnett, A., Brower, A.V.Z., Lee, M.M., Willmott, K.R. & Mallet, J. (2005) Phylogenetic utility of Tektin, a novel region for inferring systematic relationships amongst Lepidoptera. Annals of the Entomological Society of America, 98, 873–886.

    https://doi.org/10.1603/0013-8746(2005)098[0873:PUOTAN]2.0.CO;2