Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2020-03-04
Page range: 547–561
Abstract views: 140
PDF downloaded: 3

The complete mitochondrial genome of Zicrona caerulea (Linnaeus) (Hemiptera: Pentatomidae: Asopinae) and its phylogenetic implications

Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
Department of Biology, Xinzhou Teachers University, Xinzhou, Shanxi, 034000, China
Department of Entomology, Shanxi Agricultural University, Taigu, Shanxi 030801, China
Hemiptera Asopinae next generation sequencing secondary structure phylogenetic analysis


Zicrona caerulea (Linnaeus, 1758) is a cosmopolitan stink bug species, which belongs to the predatory subfamily Asopinae. In this study, the complete mitochondrial genome of Zicrona caerulea from Shanxi, China was sequenced for the first time, using next generation sequencing. The mitogenome was found to be 15,479 bp in length. It contained 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a typical control region. This research revealed an overall A+T content of 77.14%. All tRNA genes had a clover-leaf structure except for trnS1, which lacks a dihydrouridine (DHU) arm; and for trnV, the DHU arm forms a simple loop. The lengths of rrnS and rrnL were 797 bp and 1,285 bp, respectively. Because of a shortage in tandem repeats, the A+T-rich region was 644 bp in length. Phylogenetic relationships based on these mitogenomes, using Bayesian inference and Maximum likelihood methods, showed that Zicrona caerulea belongs to Asopinae. The monophyly of families of the Pentatomoidea is supported, albeit limited taxon sampling.



  1. Avise, J.C., Arnold, J., Ball, R.M., Bermingham, E., Lamb, T., Neigel, J.E., Reeb, C.A. & Saunders, N.C. (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual review of ecology and systematics, 18, 489–522.

    Bai, J., Xu, S., Nie, Z., Wang, Y., Zhu, C., Wang, Y., Min, W., Cai, Y., Zou, J. & Zhou, X. (2018) The complete mitochondrial genome of Huananpotamon lichuanense (Decapoda: Brachyura) with phylogenetic implications for freshwater crabs. Gene, 646, 217–226.

    Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S. & Prjibelski, A.D. (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of computational biology, 19, 455–477.

    Bantock, T., & Botting. J. (2013) British Bugs, an online identification guide to UK Hemiptera. Available from: http://www.briti (accessed 3 February 2020)

    Benson, G. (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic acids research, 27, 573–580.

    Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., Pütz, J., Middendorf, M. & Stadler, P.F. (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Molecular phylogenetics and evolution, 69, 313–319.

    Bhaskaran, P. & Sebastian, C.D. (2015) Genetic structure and molecular phylogeny analysis of Zicrona caerulea using COI gene sequences. Biodiversity & Evaluation: Perspectives and Paradigm shifts, 2015, 247–250.

    Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120.

    Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual review of entomology, 59, 95–117.

    Clary, D.O. & Wolstenholme, D.R. (1985) The mitochondrial DNA molecule ofDrosophila yakuba: nucleotide sequence, gene organization, and genetic code. Journal of Molecular Evolution, 22, 252–271.

    Coil, D., Jospin, G. & Darling, A.E. (2014) A5-miseq: an updated pipeline to assemble microbial genomes from Illumina MiSeq data. Bioinformatics, 31, 587–589.

    Du, Z., Hasegawa, H., Cooley, J.R., Simon, C., Yoshimura, J., Cai, W., Sota, T. & Li, H. (2019) Mitochondrial Genomics Reveals Shared Phylogeographic Patterns and Demographic History among Three Periodical Cicada Species Groups. Molecular biology and evolution, 36, 1187–1200.

    Edgar, R.C. (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC bioinformatics, 5, 113.

    Funk, D.J. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423.

    Gastineau, R., Kim, S.-Y., Lemieux, C., Turmel, M., Witkowski, A., Park, J.-G., Kim, B.-S., Mann, D.G. & Theriot, E.C. (2019) Complete mitochondrial genome of a rare diatom (Bacillariophyta) Proschkinia and its phylogenetic and taxonomic implications. Mitochondrial DNA Part B, 4, 25–26.

    Goodwin, S., McPherson, J.D. & McCombie, W.R. (2016) Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17, 333.

    Grazia, J., Schuh, R.T. & Wheeler, W.C. (2008) Phylogenetic relationships of family groups in Pentatomoidea based on morphology and DNA sequences (Insecta: Heteroptera). Cladistics, 24, 932–976.

    Harismendy, O., Ng, P.C., Strausberg, R.L., Wang, X., Stockwell, T.B., Beeson, K.Y., Schork, N.J., Murray, S.S., Topol, E.J. & Levy, S. (2009) Evaluation of next generation sequencing platforms for population targeted sequencing studies. Genome biology, 10, R32.

    Hassanin, A., Leger, N. & Deutsch, J. (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of Metazoa, and consequences for phylogenetic inferences. Systematic biology, 54, 277–298.

    Hofacker, I.L. (2003) Vienna RNA secondary structure server. Nucleic acids research, 31, 3429–3431.

    Kamarudin, K.A. & Shah, A.A. (1978) The potential of Haltica cyanea Weber (Coleoptera: Chrysomelidae) as a biological control agent of Melastoma malabathricum Linn. MARDI Research Bulletin, 6, 15–24.

    Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S. & Duran, C. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649.

    Lanfear, R., Calcott, B., Ho, S.Y. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular biology and evolution, 29, 1695–1701.

    Li, T., Hua, J., Wright, A.M., Cui, Y., Xie, Q., Bu, W. & Hillis, D.M. (2014) Long-branch attraction and the phylogeny of true water bugs (Hemiptera: Nepomorpha) as estimated from mitochondrial genomes. BMC evolutionary biology, 14, 99.

    Ma, L.Y. (1984) Preliminary observation of predation habits of Ziocrona caerulea L. in Tarim, conservation area of Populus euphratica. Journal of Xinjiang University (Science & Engineering), (1), 78–79.

    Rider, D.A. & Zheng, L.Y. (2002) Checklist and nomenclatural notes on the Chinese Pentatomidae (Heteroptera) I. Asopinae. Entomotaxonomia, 24, 107–115..

    Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic biology, 61, 539–542.

    Saccone, C., De Giorgi, C., Gissi, C., Pesole, G. & Reyes, A. (1999) Evolutionary genomics in Metazoa: the mitochondrial DNA as a model system. Gene, 238, 195–209.

    Shi, A., Li, H., Bai, X., Dai, X., Chang, J., Guilbert, E. & Cai, W. (2012) The complete mitochondrial genome of the flat bug Aradacanthia heissi (Hemiptera: Aradidae). Zootaxa, 3238 (1), 23–38.

    Simon, C., Buckley, T.R., Frati, F., Stewart, J.B. & Beckenbach, A.T. (2006) Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 37, 545–579.

    Song, N., Liang, A. & Bu, C. (2012) A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences. PLoS One, 7, e48778.

    Stamatakis, A. (2015) Using RAxML to infer phylogenies. Current protocols in bioinformatics, 51, 6.14.1–6.14.14.

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution, 30, 2725–2729.

    Thomas, D.B. (1994) Taxonomic synopsis of the Old World Asopinae genera (Heteroptera: Pentatomidae). Insecta Mundi, 8 (3–4), 199.

    Wang, S. Y., Cui, J.Z., Li, W.Z., & Zhang,. Y. (2005) The feeding habits of the genus Altica and biological significance. Chinese Bulletin Entomology, 42, 385–390.

    Wang, J., Zhang, L., Zhang, Q., Zhou, M., Wang, X., Yang, X. & Yuan, M. (2017) Comparative mitogenomic analysis of mirid bugs (Hemiptera: Miridae) and evaluation of potential DNA barcoding markers. PeerJ, 5, e3661.

    Xue, H., Wei, J., Huang, Z., Li, W. & Yang, X. (2018) Your chemical coat tells me you are my delicacy: a predatory stink bug uses cuticular hydrocarbons to identify prey. Chemoecology, 28, 69–73.

    Yang, W., Zhang, Y., Feng, S., Liu, L. & Li, Z. (2018) The first complete mitochondrial genome of the Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae) and its phylogenetic implications for the superfamily Scarabaeoidea. International journal of biological macromolecules, 118, 1406–1413.

    Yuan, M., Zhang, Q., Guo, Z., Wang, J. & Shen, Y. (2015a) Comparative mitogenomic analysis of the superfamily Pentatomoidea (Insecta: Hemiptera: Heteroptera) and phylogenetic implications. BMC genomics, 16, 460.

    Yuan, M., Zhang, Q., Guo, Z., Wang, J. & Shen, Y. (2015b) The complete mitochondrial genome of Corizus tetraspilus (Hemiptera: Rhopalidae) and phylogenetic analysis of Pentatomomorpha. PLoS One, 10, e0129003.

    Zhang, D. & Hewitt, G.M. (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochemical Systematics and Ecology, 25, 99–120.

    Zhang, D., Li, M., Li, T., Yuan, J. & Bu, W. (2018) A mitochondrial genome of Micronectidae and implications for its phylogenetic position. International journal of biological macromolecules, 119, 747–757.

    Zhang, S., Shu, J., Wang, Y., Liu, Y., Peng, H., Zhang, W. & Wang, H. (2019) The complete mitochondrial genomes of two sibling species of camellia weevils (Coleoptera: Curculionidae) and patterns of Curculionini speciation. Scientific reports, 9, 3412.

    Zhang, S.F. translate (1994) Insectivorous natural enemies of Leptinotarsa decemlineata in Europe. Plant Quarantine, 8 (5), 276–278.

    Zhao, Q. (2013) A revision of the Asopinae from China and the study of DNA taxonomy of Arma, Carbula and Eysarcoris (Hemipetra: Pentatomidae). PHD thesis, Nankai University, Tianjin, 279 pp. [in Chinese]

    Zhao, Q., Wang, J., Wang, M., Cai, B., Zhang, H. & Wei, J. (2018) Complete mitochondrial genome of Dinorhynchus dybowskyi (Hemiptera: Pentatomidae: Asopinae) and phylogenetic analysis of Pentatomomorpha species. Journal of Insect Science, 18, 44.

    Zhao, Q., Wei, J., Zhao, W., Cai, B., Du, X. & Zhang, H. (2017) The first mitochondrial genome for the subfamily Asopinae (Heteroptera: Pentatomidae) and its phylogenetic implications. Mitochondrial DNA Part B, 2, 804–805.

    Zhu, X., Xin, Z., Wang, Y., Zhang, H., Zhang, D., Wang, Z., Zhou, C., Tang, B. & Liu, Q. (2017) The complete mitochondrial genome of Clostera anachoreta (Lepidoptera: Notodontidae) and phylogenetic implications for Noctuoidea species. Genomics, 109, 221–226.

    Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research, 31, 3406–3415.