Abstract
Chironomids of the tribe Boreoheptagyiini from the mountains of Iran, China and East Kazakhstan are revised using both morphological characters and partial DNA sequences of the mitochondrial cytochrome c oxidase subunit I gene. Using adult males, Palatovia lorestanica gen. nov. sp. nov., as well as Boreoheptagyia iranica sp. nov. both from Iran (Lorestan Province, Zagros Mountains), B. joeli sp. nov. from China (Tien Shan Mountains), and B. sarymsactyensis sp. nov. from Eastern Kazakhstan (Kazakh Mountain Altai), are described and figured. A brief redescription of the rare species B. brevitarsis (Tokunaga) from Iran (Mazandaran Province), previously known only from Japan, is also given. The DNA barcoding analysis shows well-supported genetic divergence between all studied taxa (four species of the genus Boreoheptagyia and one of Palatovia). Combining DNA barcodes obtained in this study with available sequences in GenBank, the phylogenetic relationships of the tribe Boreoheptagyiini are reconstructed. In the resulting Bayesian and maximum likelihood (ML) tree the polyphyly of the genus Boreoheptagyia is recognized. B. iranica is placed as a sister species to P. lorestanica, despite the lack of confirmation of their morphological similarity.
References
Ashe, P. & O’Connor, J.P. (2009) A World Catalogue of Chironomidae (Diptera). Part 1. Buchonomyiinae, Chilenomyiinae, Podonominae, Aphroteniinae, Tanypodinae, Usambaromyiinae, Diamesinae, Prodiamesinae and Telmatogetoninae. Irish Biogeographical Society & National Museum of Ireland, Dublin, 445 pp.
Aydin, G.B. & Samin, N. (2020) A preliminary study aimed an annotated checklist of Chironomidae (Diptera: Culicomorpha: Chironomoidea) of Iran. Acta Aquatica Turcica, 16 (1), 38–50.
https://doi.org/10.22392/actaquatr.573632
Brundin, L. (1966) Transantarctic relationships and their significance, as evidenced by chironomid midges. With a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae. Kungliga Svenska Vetenskapsakademiens Handlingar, Series 4, 11 (1), 1–472.
Carew, M.E., Pettigrove, V. & Hoffmann, A.A. (2005) The utility of DNA markers in classical taxonomy: using cytochrome oxidase I markers to differentiate Australian Cladopelma (Diptera: Chironomidae) midges. Annals of the Entomological Society of America, 98, 587–594.
https://doi.org/10.1603/0013-8746(2005)098[0587:TUODMI]2.0.CO;2
Ekrem, T., Willassen, E. & Stur, E. (2007) A comprehensive DNA library is essential for identification with DNA barcodes. Molecular phylogenetics and evolution, 43, 530–542.
https://doi.org/10.1016/j.ympev.2006.11.021
Ekrem, T., Stur, E. & Hebert, P.D.N. (2010) Females do count: Documenting Chironomidae (Diptera) species diversity using DNA barcoding. Organisms Diversity Evolution, 10, 397.
https://doi.org/10.1007/s13127-010-0034-y
Endo, K. (2002) List of Boreoheptagyia from Japan. Yusurika, 23, 12. [in Japanese]
Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
Hasegawa, M., Kishino, H. & Yano, T. (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.
https://doi.org/10.1007/bf02101694
Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874.
https://doi.org/10.1093/molbev/msw054
Lanfear, R., Calcott B., Ho S.Y. & Guindon S. (2012) Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29 (6), 1695–1701.
https://doi.org/10.1093/molbev/mss020
Makarchenko, E.A. (1981) Taxonomy and distribution of some chironomids of subfamily Diamesinae (Diptera, Chironomidae) from the Soviet Far East. In: Invertebrate animals in ecosystems of salmon rivers of the Far East. DVNC AN SSSR Press, Vladivostok, pp. 45–51. [in Russian]
Makarchenko, E.A. (1985) Chironomids of the Soviet Far East. Subfamilies Podonominae, Diamesinae and Prodiamesinae (Diptera, Chironomidae). DVNC AN SSSR Press, Vladivostok, 208 pp. [in Russian]
Makarchenko, E.A. (2006) Subfamily Diamesinae. In: Key to the Insects of Russian Far East. Vol. 6. Diptera and Sipphonaptera. Pt 4. Dal’nauka, Vladivostok, pp. 253–276 + 468–480 + 607–621. [in Russian]
Makarchenko, E.A., Endo, K., Wu, J. & Wang, X. (2008) A review of Boreoheptagyia Brundin, 1966 (Chironomidae: Diamesinae) from East Asia and bordering territories, with the description of five new species. Zootaxa, 1817 (1), 1–17.
https://doi.org/10.11646/zootaxa.1817.1.1
Makarchenko, E.A., Semenchenko, A.A. & Palatov, D.M. (2017) Review of subfamily Diamesinae (Diptera, Chironomidae) from Tien Shan and Pamir mountains. In: Lencioni V. (Ed.), 20th International Symposium on Chironomidae. Abstract Book of the 20th International Symposium on Chironomidae, 2–8 July 2017. MUSE—Museo delle Scienze, Trento, pp. 36.
Makarchenko, E.A., Semenchenko, A.A., Kang, H. & Bae, Y.J. (2018) Morphological redescription and DNA barcoding of Kaluginia lebetiformis Makarchenko, 1987 (Diptera: Chironomidae, Diamesinae) from South Korea. Far Eastern Entomologist, 367, 26–32.
https://doi.org/10.25221/fee.367.4
Makarchenko, E.A., Rumyantseva, A. Yu. & Yavorskaya, N.M. (2020) New data on taxonomy and distribution of Kaluginia lebetiformis Makarchenko, 1987 (Diptera: Chironomidae, Diamesinae) from East Asia. Far Eastern Entomologist, 399, 19–28.
https://doi.org/10.25221/fee.399.3
Moubayed, J. (1992) Boreoheptagyia phoenicia sp.n. (Diptera, Chironomidae, Diamesinae) from Lebanese mountain spring. Netherlands journal of aquatic ecology, 26 (2–4), 187–190.
https://doi.org/10.1007/BF02255240
Montagna, M., Mereghetti, V., Lencioni, V. & Rossaro, B. (2016) Integrated Taxonomy and DNA Barcoding of Alpine Midges (Diptera: Chironomidae). PLoS ONE, 11 (3), e0149673.
https://doi.org/10.1371/journal.pone.0149673
Oliver, D.R., Dillon, M.E. & Cranston, P.S. (1990) A Catalog of Nearctic Chironomidae. Publication 1857/B. Research Branch, Agriculture Canada, Ottawa, 89 pp.
Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 67 (5), 901–904.
https://doi.org/10.1093/sysbio/syy032
Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.
https://doi.org/10.1093/bioinformatics/btg180
Rossaro, B. (2017) Boreoheptagyia ortladamellica sp. nov. (Diptera, Chironomidae) from Italian Alps. Journal of Entomological and Acarological Research, 49 (6860), 77–80.
https://doi.org/10.4081/jear.2017.6860
Sasa, M. & Okazawa, T. (1992) Studies on the chironomid midges (yusurika) of Kurobe River. Research Report from Toyama Prefectural Environmental Pollution Research Centre, 1992, 40–91.
Sasa, M. & Kikuchi, M. (1995) Chironomidae (Diptera) of Japan. University of Tokyo Press, Tokyo, 333 pp.
Sæther, O.A. (1980) Glossary of chironomid morphology terminology (Diptera, Chironomidae). Entomologica scandinavica, Supplement 14, 1–51.
Serra-Tosio, B. (1983) Nouveaux Diamesinae de la Palearctide meridionale et orientale (Diptera, Chironomidae). Spixiana, 6, 1–26.
Serra-Tosio, B. (1989) Révision des espèces ouest-paléarctiques et néarctiques de Boreoheptagyia Brundin avec des clés pour les larves, les nymphes et les imagos (Diptera, Chironomidae). Spixiana, 11, 133–173.
Stamatakis, A. (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.
https://doi.org/10.1093/bioinformatics/btl446
Tokunaga, M. (1936) Chironomidae from Japan (Diptera). VI. Diamesinae. Phillipine Journal of Science, 59, 525–552.
Tokunaga, M. (1939) Chironomidae from Japan (Diptera). XI. New or little-known midges, with special reference to the metamorphosis of torrential species. Phillipine Journal of Science, 69, 297–345.
Zharkikh, A.J. (1994) Estimation of evolutionary distances between nucleotide sequences. Molecular Evolution, 39, 315.