Abstract
Taxonomy of Odontolabis sinensis (Westwood, 1848) and Odontolabis fallaciosa Boileau, 1901 has long been a controversial issue due to their highly morphological similarity except for elytral color patterns. In the present work, we assessed their taxonomic status by combining molecular phylogeny and species delimitation based on multilocus datasets (COI, 16S rDNA, Cytb, CAD, Wingless). Phylogenetic analyses under both Maximum Likelihood inference and Bayesian inference recovered identical topologies. All the examined individuals in the clade of O. sinensis and O. fallaciosa formed into five subclades belonging to four color patterns, respectively. The Kimura-2-Parameter (K2P) genetic distance analysis yielded a low mean value (0.0108−0.0295). The multiple species delimitations (ABGD, PTP and GMYC) reinforced them to be one MOTU. Our results suggest that these clades belong to the same species, and thus we propose O. fallaciosa to be a junior subjective synonym of O. sinensis. We also found two new color patterns corresponding to two clades from Southwestern China (north of 20°N and east of 105°E), respectively displaying the reddish-orange, slenderly rimmed patch and brownish-orange broad patches along the elytral edge, which was probably attributable to both historical and ecological factors in this particular region.
References
Abouheif, E. & Wray, G.A. (2002) Evolution of the gene network underlying wing polyphenism in Ants. Science, 297, 249.
http://doi.org/10.1126/science.1071468
Adriaens, T., San Martin y Gomez, G. & Maes, D. (2008) Invasion history, habitat preferences and phenology of the invasive ladybird Harmonia axyridis in Belgium. Biocontrol, 53, 69−88.
https://doi.org/10.1007/s10526-007-9137-6
Ando, T. & Niimi, T. (2019) Development and evolution of color patterns in ladybird beetles: A case study in Harmonia axyridis. Development Growth & Differentiation, 61, 73−84.
https://doi.org/10.1111/dgd.12592
Balke, M., Ribera, I. & Vogler, A.P. (2004) MtDNA phylogeny and biogeography of Copelatinae, a highly diverse group of tropical diving beetles (Dytiscidae). Molecular Phylogenetics and Evolution, 32, 866−880.
https://doi.org/10.1016/j.ympev.2004.03.014
Benesh, B. (1960) Lucanidae. W. Junk, Gravenhage, 178 pp.
Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) Beast 2: a software platform for bayesian evolutionary analysis. Plos Computational Biology, 10, e1003537.
https://doi.org/10.1371/journal.pcbi.1003537
Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540−552.
https://doi.org/10.1093/oxfordjournals.molbev.a026334
Didier, R. & Séguy, E. (1953) Catalogue illustré des Lucanides du Globe. Encyclopédie Entomologique, Serie A, 27, 1−223.
Fujita, H. (2010) The Lucanid Beetles of the World. Mushi-sha, Tokyo, 472 pp.
Gray, S.M. & McKinnon, J.S. (2007) Linking color polymorphism maintenance and speciation. Trends in Ecology and Evolution, 22, 71−79.
https://doi.org/10.1016/j.tree.2006.10.005
Honek, A., Brown, P.M.J., Martinkova, Z., Skuhrovec, J., Brabec, M., Burgio, G., Evans, E.W., Fournier, M., Grez, A.A., Kulfan, J., Lami, F., Lucas, E., Lumbierres, B., Masetti, A., Mogilevich, T., Orlova-Bienkowskaja, M., Phillips, W.M., Pons, X., Strobach, J., Viglasova, S., Zach, P. & Zaviezo, T. (2020) Factors determining variation in colour morph frequencies in invasive Harmonia axyridis populations. Biological Invasions, 22, 2049−2062.
http://doi.org/10.1007/s10530-020-02238-0
Hosoya, T., Honda, M. & Araya, K. (2001) Genetic variation of 16S rRNA gene observed in Ceruchus lignarius and Dorcus rectus rectus (Coleoptera: Lucanidae). Entomological Science, 4, 335−344.
Jiang, L.P., Dong, B.Q., Liu, X.H., Liu, F. & Zi, J. (2012) Structural origin of sexual dichromatic coloration and luster in the beetle Goliathus cacicus. Chinese Science Bulletin, 57, 3211−3217.
https://doi.org/10.1007/s11434-012-5343-4
Katoh, K., Rozewicki, J. & Yamada, K.D. (2017) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics, 20, 1160−1166.
https://doi.org/10.1093/bib/bbx108
Kawano, K. (2003) Character Displacement in Stag Beetles (Coleoptera: Lucanidae). Annals of the Entomological Society of America, 96, 503−511.
https://doi.org/10.1603/0013-8746(2003)096[0503:CDISBC]2.0.CO;2
Krajčík, M. (2001) Lucanidae of the world. Part 1. Published by the author, Most, 108 pp.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution, 35, 1547−1549.
http://doi.org/10.1093/molbev/msy096
Kuraku, S., Zmasek, C.M., Nishimura, O. & Katoh, K. (2013) aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research, 41, W22−W28.
https://doi.org/10.1093/nar/gkt389
Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2017) PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular Biology and Evolution, 34, 772−773.
https://doi.org/10.1093/molbev/msw260
Leuthner, F. (1885) A monograph of the Odontolabini, a subdivision of the Coleopterous family Lucanidae. Transactions of the Zoological Society of London, 11, 385−491, 19 pls.
Matsumoto, K. & Knell, R.J. (2017) Diverse and complex male polymorphisms in Odontolabis stag beetles (Coleoptera: Lucanidae). Scientific Reports, 7, 11.
https://doi.org/10.1038/s41598-017-17115-5
Mizunuma, T. & Nagai, S. (1994) The lucanid beetles of the world. Mushi–sha, Tokyo, 338 pp.
Monaghan, M.T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D.J., Lees, D., Ranaivosolo, R., Eggleton, P., Barraclough, T.G. & Vogler, A.P. (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology, 58, 298−311.
https://doi.org/10.2307/25677511
Moulton, J.K. & Wiegmann, B.M. (2004) Evolution and phylogenetic utility of CAD (rudimentary) among Mesozoic-aged Eremoneuran Diptera (Insecta). Molecular Phylogenetics and Evolution, 31, 363−378.
https://doi.org/10.1016/s1055-7903(03)00284-7
Nie, R.E., Xue, H.J., Hua, Y., Yang, X.K. & Vogler, A.P. (2012) Distinct species or colour polymorphism? Life history, morphology and sequence data separate two Pyrrhalta elm beetles (Coleoptera: Chrysomelidae). Systematics and Biodiversity, 10, 133−146.
https://doi.org/10.1080/14772000.2012.687783
Noriyuki, S. & Osawa, N. (2015) Geographic variation of color polymorphism in two sibling ladybird species, Harmonia yedoensis and H. axyridis (Coleoptera: Coccinellidae). Entomological Science, 18, 502−508.
https://doi.org/10.1111/ens.12147
Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., Kamoun, S., Sumlin, W. & Vogler, A. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595−609.
https://doi.org/10.1080/10635150600852011
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864−1877.
https://doi.org/10.1111/j.1365-294x.2011.05239.x
Purse, B.V., Comont, R., Butler, A., Brown, P.M.J., Kessel, C. & Roy, H.E. (2015) Landscape and climate determine patterns of spread for all colour morphs of the alien ladybird Harmonia axyridis. Journal of Biogeography, 42, 575−588.
https://doi.org/10.1111/jbi.12423
Qiu, Y.X., Lu, Q.X., Zhang, Y.H. & Cao, Y.N. (2017) Phylogeography of East Asia’s tertiary relict plants: current progress and future prospects. Biodiversity Science, 25, 136−146.
https://doi.org/10.17520/biods.2016292
Ronquist, F.M., Teslenko, P.V.D., Mark, D.L., Ayres, A., Darling, S., Höhna, B., Larget, L., Liu, M., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539−542.
https://doi.org/10.1093/sysbio/sys029
Rowland, J.M. & Emlen, D.J. (2009) Two thresholds, three male forms result in facultative male trimorphism in beetles. Science, 323, 773−776.
https://doi.org/10.1126/science.1167345
Simon, C., Frati, F., Andrew, B., Bernie, C., Hong, L. & Paul, F. (1994) Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of Entomological Society of America, 87, 651−701.
https://doi.org/10.1093/aesa/87.6.651
Strickland, L.R., Arias, C.F., Rodriguez, V., Johnston, J.S., McMillan, W.O. & Windsor, D. (2019) Inheritance, distribution and genetic differentiation of a color polymorphism in Panamanian populations of the tortoise beetle, Chelymorpha alternans (Coleoptera: Chrysomelidae). Heredity, 122, 558−569.
https://doi.org/10.1038/s41437-018-0149-z
Sukirno, S., Tufail, M., Rasool, K.G. & Aldawood, A.S. (2018) Undescribed color polymorphism of the Asiatic palm weevil, Rhynchophorus vulneratus Panzer (Coleoptera: Curculionidae) in Indonesia: biodiversity study based on COI gene. Florida Entomologist, 101, 642−648.
https://doi.org/10.1653/024.101.0401
Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564−577.
https://doi.org/10.1080/10635150701472164
Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, W232−W235.
https://doi.org/10.1093/nar/gkw256
Tsai, C.L., Wan, X. & Yeh, W.B. (2014) Differentiation in stag beetles, Neolucanus swinhoei complex (Coleoptera: Lucanidae): four major lineages caused by periodical Pleistocene glaciations and separation by a mountain range. Molecular Phylogenetics and Evolution, 78, 245−259.
https://doi.org/10.1016/j.ympev.2014.05.004
Vondráček, D., Fuchsová, A., Ahrens, D., Král, D. & Šípek, P. (2018) Phylogeography and DNA-based species delimitation provide insight into the taxonomy of the polymorphic rose chafer Protaetia (Potosia) cuprea species complex (Coleoptera: Scarabaeidae: Cetoniinae) in the Western Palearctic. PLoS One, 13, e0192349.
https://doi.org/10.1371/journal.pone.0192349
Vijay, N., Bossu, C.M., Poelstra, J.W., Weissensteiner, M.H., Suh, A., Kryukov, A.P. & Wolf, J.B. (2016) Evolution of heterogeneous genome differentiation across multiple contact zones in a crow species complex. Nature Communications, 7, 13195.
https://doi.org/10.1038/ncomms13195
Wan, X. (2007) Study on the systematics of Lucanidae from China (Coleoptera: Scarabaeoidea). M.Sc. Thesis, Institute of Zoology, Chinese Academy of Sciences, Beijing, 343 pp.
Ward, P.S. & Downie, D.A. (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Systematic Entomology, 30, 310−335.
https://doi.org/10.1111/j.1365-3113.2004.00281.x
Whitman, D.W. & Agrawal, A.A. (2009) What is phenotypic plasticity and why is it important? In: Whitman, D.W. & Ananthakrishnan, T.N. (Eds.), Phenotypic Plasticity of Insects: Mechanism and Consequences. Science Publishers, Enfield, New Hampshire, pp. 1−63.
Wild, A.L. & Maddison, D.R. (2008) Evaluating nuclear protein-coding genes for phylogenetic utility in beetles. Molecular Phylogenetics and Evolution, 48, 877−891.
https://doi.org/10.1016/j.ympev.2008.05.023
Winterton, S.L., Hardy, N.B. & Wiegmann, B.M. (2010) On wings of lace: phylogeny and Bayesian divergence time estimates of Neuropterida (Insecta) based on morphological and molecular data. Systematic Entomology, 35, 349−378.
https://doi.org/10.1111/j.1365-3113.2010.00521.x
Ye, J.W., Zhang, Y. & Wang, X.J. (2017) Phylogeographic breaks and the mechanisms of their formation in the Sino-Japanese floristic region. Jounal of Plant Ecology, 41, 1003−1019.
https://doi.org/10.17521/cjpe.2016.0388
Ye, Z., Chen, P. & Bu, W. (2016) Terrestrial mountain islands and Pleistocene climate fluctuations as motors for speciation: A case study on the genus Pseudovelia (Hemiptera: Veliidae). Scientific Reports, 6, 33625.
https://doi.org/10.1038/srep33625
Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348−355.
https://doi.org/10.1111/1755-0998.13096
Zhang, J.J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869−2876.
https://doi.org/10.1093/bioinformatics/btt499