Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-04-28
Page range: 385–395
Abstract views: 89
PDF downloaded: 9

Morphological and molecular characterization of Buzionema lutgardae n. sp. (Nematoda: Oxyuridomorpha: Thelastomatidae) from the cockroach Byrsotria sp. (Blattaria: Blaberidae) in Cuba

Instituto de Ecología y Sistemática, Carretera Varona 11835 e/ Oriente y Lindero, La Habana 19, CP 11900, Calabazar, Boyeros, La Habana, Cuba Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487–8501, Japan.
Instituto de Ecología y Sistemática, Carretera Varona 11835 e/ Oriente y Lindero, La Habana 19, CP 11900, Calabazar, Boyeros, La Habana, Cuba
Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, 1200 Matsumoto, Kasugai, Aichi 487–8501, Japan.
Department of Zoology, Ohio Wesleyan University, Delaware, Ohio, 43015, USA.
Nematoda Buzionema new species phylogeny SEM West Indies 18S rDNA 28S rDNA

Abstract

Buzionema lutgardae n. sp. (Nematoda: Oxyuridomorpha: Thelastomatidae) is described from the cockroach Byrsotria sp. (Blattaria: Blaberidae), endemic to Cuba. Females of B. lutgardae n. sp. are shorter than those of B. validum Kloss, 1966 (1600–2150 µm vs. 3131–3378 µm), but the oesophagus is comparatively longer (b = 2.96–3.77 vs. 4.65–4.87). The lateral alae of the new species extend from ca. the midpoint of the cylindrical part of the procorpus to the level of the anus in contrast to the base of the basal bulb to the level of the anus in B. validum. The males of B. lutgardae n. sp. are shorter than those of B. validum (780–940 µm vs. 1177–1423 µm) and their lateral alae end at some distance before the cloaca instead the level of the cloaca in B. validum. The phylogeny of B. lutgardae n. sp. is inferred by the D2-D3 domains of the 28S rDNA. B. lutgardae n. sp. and B. validum form a monophyletic clade with strong nodal support, as sister-group of the genus Leidynema Schwenck in Travassos, 1929.

 

References

  1. Adamson, M.L. & Van Waerebeke, D. (1992) Revision of the Thelastomatoidea, Oxyurida of invertebrate hosts I. Thelastomatidae. Systematic Parasitology, 22, 111–130.

    https://doi.org/10.1007/BF00009911

    Blaxter, M.L., De Ley, P., Garey, J.R., Liu, L.X., Scheldeman, P., Vierstraete, A., Vanfleteren, J.R., Mackey, L.Y., Dorris, M., Frisse, L.M., Vida, J.T. & Thomas, W.K. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature, 392, 71–75.

    https://doi.org/10.1038/32160

    Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics, 25, 1972–1973.

    https://doi.org/10.1093/bioinformatics/btp348

    Carreno, R.A. & Nadler, S.A. (2003) Phylogenetic analysis of the Metastrongyloidea (Nematoda: Strongylida) inferred from ribosomal RNA gene sequences. Journal of Parasitology, 89, 965–973.

    https://doi.org/10.1645/GE-76R

    Carreno, R.A. & Tuhela, L. (2011) Thelastomatid Nematodes (Oxyurida: Thelastomatoidea) from the Peppered Cockroach, Archimandrita tesselata (Insecta: Blattaria) in Costa Rica. Comparative Parasitology, 78 (1), 39–55.

    https://doi.org/10.1654/4455.1

    Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    https://doi.org/10.1093/nar/gkh340

    García, N. & Coy, A. (1998) Nuevo género, nueva especie y nuevos registros de thelastomátidos (Oxyurida; Thelastomatidae) parásitos de Byrsotria sp. (Dictyoptera; Blaberidae). Avicennia, 8/9, 41–49.

    Kloss, G.R. (1966) Revisão dos nematóides de Blattaria de Brasil. Papéis Avulsos do Departamento de Zoologia, Sao Paulo, 18, 147–188.

    Nadler, S.A., De Ley, P., Mundo-Ocampo, M., Smythe, A.B., Stock, S.P., Bumbarger, D., Adams, B.J., De Ley, I.T., Holovachov, O. & Baldwin, J.G. (2006) Phylogeny of Cephalobina (Nematoda): molecular evidence for recurrent evolution of probolae and incongruence with traditional classifications. Molecular Phylogenetics and Evolution, 40, 696–711.

    https://doi.org/10.1016/j.ympev.2006.04.005

    Nunn, G.B. (1992) Nematode molecular evolution. University of Nottingham, Nottingham, 187 pp.

    Rambaut, A., Suchard, M.A., Xie, W. & Drummond, A.J. (2003) Tracer. Version 1.6. Available from: http://beast.bio.ed.ac.uk/Tracer (accessed 12 October 2016)

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Aaron, D., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.

    https://doi.org/10.1093/sysbio/sys029

    Seinhorst, J.W. (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica, 4, 67–69.

    https://doi.org/10.1163/187529259X00381

    Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    https://doi.org/10.1093/molbev/mst197