Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-06-18
Page range: 1-22
Abstract views: 645
PDF downloaded: 26

Multivariate analysis of geographic variation in Darevskia clarkorum (Darevsky & Vedmederja, 1977), correlation with geographic and climatic parameters, and true status of Darevskia dryada (Darevsky & Tuniyev, 1997)

Avda. Francisco Cambó 23, E-08003 Barcelona, Spain.
Dokuz Eylül University, Faculty of Science, Department of Biology, 35160, Buca, İzmir, Turkey.
Dokuz Eylül University, Faculty of Science, Department of Biology, 35160, Buca, İzmir, Turkey.
Dokuz Eylül University, Faculty of Science, Department of Biology, 35160, Buca, İzmir, Turkey.
Darevskia clarkorum D. dryada Caucasian Rock Lizards distribution morphometry meristic scalation characters Multivariate analyses CDA PCA ANOSIM MST UPGMA osteology northeastern Anatolia Adzharia Turkey Georgia

Abstract

All the Turkish populations studied, both those previously assigned to D. dryada (Subaşı and Yoldere villages, near Hopa) and those attributed to D. clarkorum (the largest sample studied so far, 177 specimens in total), are indistinguishable from each other and therefore must all be ascribed to the natural variability of a monotypic D. clarkorum. The Georgian specimens from the Type Locality of D. dryada (Charnaly river gorge, Chevachauri district) are clearly different, so that taxon cannot be considered a simple synonym for D. clarkorum, but as a valid taxon, although its proper status (more probably as a subspecies of D. clarkorum), is yet to be clarified. It is a highly threatened population, so studies should be done in vivo or with as low intrusiveness as possible.

                Darevskia dryada is clearly larger (SVL) than any D. clarkorum studied, with strongly longer heads and pilei in adult males (and hence more teeth in dentary bone), and higher dorsalia counts. There also seem to be (but need to be studied in a larger sample) more longitudinal rows of temporal scales between tympanic and parietal plates, a tendency to have more supralabial scales; comparatively smaller values for longitudinal rows of scales on the ventral surface of the thigh between the femoral pores and the outer row of enlarged scales, and higher collaria, and circumanalia scales. Other differences in femoralia and gularia are also reflected in Darevsky & Tuniyev’s (1997) tables and should also be investigated with more Georgian specimens.

                Two supposed discriminant characters, the frontonasal index and the presence of developed masseteric, are not valid. The frontonasal index does not discriminate both taxa; D dryada specimens fall inside the variation of D. clarkorum for this character. Also the presence of a developed masseteric plate is supposed to be rare if at all in D. clarkorum but always present in D. dryada; however, it appears in nearly 75% of D. clarkorum studied and in all D. dyada, so is also no longer valid for taxa discrimination.

                Although very similar, D. clarkorum and D. dryada are morphologically different, and genetic studies (as the unpublished results mentioned by Fu, 1999) do not make the provenance of the specimens clear, and hence the correct identification of the supposed specimens of D. dryada used.

                There are no geographical clines in D. clarkorum. However, as stated by Schmidtler et al. (2002), there is an inverse relationship between altitude and dorsalia values in D. clarkorum. Both the general differentiation between populations and the scalation (dorsalia) appear statistically correlated with the altitude and also with latitude (being both factors not strictly the same). The correlation seems to be stronger with morphology in general (multiple scalation characters and head biometry) than only with dorsalia. In the case of the general differentiation among samples, it is also significantly correlated with temperatures during the activity period (April-September) and with precipitation during incubation (July-August). As these climatic parameters of temperature and precipitation are not directly correlated with the dorsalia variation, the relation with altitude (and perhaps latitude) must be linked to some other climatic parameter not studied here, perhaps solar radiation or evapotranspiration.

 

References

  1. Altunışık, A. & Eksilmez, H. (2018) Demographic life history traits in a population of a critically endangered species, Darevskia dryada (Darevsky& Tuniyev,1997). Animal Biology, 68 (1), 27–37.  https://doi.org/10.1163/15707563-17000092

  2. Ananjeva, N.B., Orlov, N.L., Khalikov, R.G., Darevsky, I.S., Ryabov, I.S. & Barabanov, A.V. (2004) The Reptiles of Northern Eurasia: Taxonomic diversity, distribution, conservation status. Zoological Institute, St-Petersburg, 245 pp.

  3. Arnold, E.N. (1973) Relationships of the Palaearctic lizards assigned to the genera Lacerta, Algyroides and Psammodromus (Reptilia: Lacertidae). Bulletin of the British Museum (Natural History) Zoology, London, 25 (8), 289–366.

  4. Arnold, E.N., Arribas, O. & Carranza, S. (2007) Systematics of the Palaearctic and Oriental lizard tribe Lacertini (Squamata: Lacertidae: Lacertinae), with descriptions of eight new genera. Zootaxa, 1430 (1), 1–86.  https://doi.org/10.11646/zootaxa.1430.1.1

  5. Arribas, O.J. (1998) Osteology of the Pyrenaean Mountain Lizards and comparison with other species of the collective genus Archaeolacerta Mertens, 1921 s.l. from Europe and Asia Minor (Squamata: Lacertidae). Herpetozoa, Wien, 11 (1/2), 47–70.

  6. Arribas, O.J. (1999a) Phylogeny and relationships of the mountain lizards of Europe and Near East (Archaeolacerta Mertens, 1921, Sensu lato) and their relationships among the Eurasian lacertid radiation. Russian Journal of Herpetology, 6 (1), 1–22.

  7. Arribas, O.J. (1999b) Análisis factorial de la variación paralela en varios caracteres de folidosis y biometría de las lagartijas de alta montaña de los Pirineos (Archaeolacerta sensu lato). Su significado en sistemática y taxonomía. Butlletí Societat Catalana d’ Herpetologia, 14, 22–29.

  8. Arribas, O.J. (2010) Intraspecific variability of the Carpetane Lizard (Iberolacerta cyreni [Müller & Hellmich, 1937]) (Squamata: Lacertidae), with special reference to the unstudied peripheral populations from the Sierras de Avila (Paramera, Serrota and Villafranca). Bonn Zoological Bulletin, 57 (2), 197–210.

  9. Arribas, O. & Odierna, G. (2004) Karyological and osteological data supporting the specific status of Iberolacerta (cyreni) martinezricai (Arribas, 1996). Amphibia-Reptilia, 25, 359–367. https://doi.org/10.1163/1568538042788942

  10. Arribas, O., Ilgaz, Ç., Kumlutaş, Y., Durmuş, S.H., Avcı, A. & Üzüm, N. (2013) External morphology and osteology of Darevskia rudis (Bedriaga, 1886), with a taxonomic revision of the Pontic and Small-Caucasus populations (Squamata: Lacertidae). Zootaxa, 3626 (54), 401–428.  https://doi.org/10.11646/zootaxa.3626.4.1

  11. Arribas, O.J., Galan, P., Remon, N. & Naveira, H. (2014) A new mountain lizard from Montes de León (NW Iberian Peninsula): Iberolacerta monticola astur ssp. nov. (Squamata: Lacertidae). Zootaxa, 3796 (2), 201–236.  https://doi.org/10.11646/zootaxa.3796.2.1 

  12. Baran, İ., Atatur, M.K. (1998) Turkish Herpetofauna (Amphibians and Reptiles). Republic of Turkey Ministry of Environment, Ankara, 214 pp

  13. Bischoff, W. (2003) Die Eidechsenfauna Georgiens. Teil II. Die Gattung DarevskiaDie Eidechse, Bonn, 14 (3), 65–93.

  14. Bischoff, W. & Tarkhnishvili, D. (2002) Dreieinhalb Wochen Georgien, der Eidechsenwegen. Tier und Museum, 8 (1/2), 37–52.

  15. Blackith, R.E. & Reyment, R.A. (1971) Multivariate morphometrics. Academic press, London & NewYork, 412 pp.

  16. Bosch, H.A.J. in den & Bischoff, W. (2004) Remarks on the herpetofauna of the Caucasian Republic of Georgia, with special reference to the Lacertidae. Podarcis, 5 (2), 28–57.

  17. Brown, R.P. (2005) Large subunit mitochondrial rRNA secondary structures and site-specific rate variation in two lizard lineages. Journal of Molecular Evolution, 60 (1), 45–56.

  18. Ciobanu, D.G., Roudykh, I.A., Ryabinina, N.L., Grechko, V.V., Kramerov, D.A. & Darevsky, I.S. (2002) Reticulate evolution of parthenospecies of the Lacertidae rock lizards: Inheritance of CLsat tandem repeats and anonymous RAPD markers. Molecular Biology, 36 (2), 223–231. https://doi.org/10.1023/A:1015369906292

  19. Ciobanu, D.G., Grechko, V.V. & Darevsky, I.S. (2003) Molecular evolution of satellite DNA CLsat in lizards from the Genus Darevskia (Sauria: Lacertidae): Correlation with species diversity. Russian Journal of Genetics, 39 (11), 1292–1305. https://doi.org/10.1023/B:RUGE.0000004145.00165.ee

  20. Ciobanu, D., Grechko, V.V., Darevsky, I.S. & Kramerov, D.A. (2004) New satellite DNA in Lacerta s. str. lizards (Sauria: Lacertidae): Evolutionary pathways and phylogenetic impact. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 302B, 505–516.  https://doi.org/10.1002/jez.b.21014

  21. Clark, R.J. & Clark, E.D. (1973) Collection of amphibians and reptiles from Turkey. California Academic Science, 104, 1–62.

  22. Clarke, K.R. (1988) Detecting change in benthic community structure. In: Oger, R. (Ed.), Proceedings of invited papers, 14th International Biometric Conference, Namour, Belgium, 1988, pp. 131–142.

  23. Clarke, K.R. (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology, 18, 117–143.  https://doi.org/10.1111/j.1442-9993.1993.tb00438.x

  24. Darevsky, I.S. (1967) Rock lizards of the Caucasus (Systematics, Ecology and Phylogenesis of the polymorphic groups of Rock lizards of the Subgenus Archaeolacerta. Nauka press. Leningrad, 216 pp. [translation: Indian National Scientific Documentation Centre, New Delhi, 276 pp].

  25. Darevsky, I.S. & Vedmederja, V. (1977) A new species of rock lizard Lacerta saxicola Eversmann group from northeastern Turkey and adjoining regions of Adjaria. Trudy Zoological Institute Akademia, 74, 50–54.

  26. Darevsky, I.S. & Tuniyev, B.S. (1997) A new lizard species from Lacerta saxicola group— Lacerta dryada sp. nov. (Sauria, Lacertidae) and some comments relative to Lacerta clarkorum Darevsky et Vedmederja, 1977. Russian Journal of Herpetology, 4, 1–7. https://doi.org/10.30906/1026-2296-1997-4-1-1-7

  27. Durfort, M. (1978) Tècniques de transparentat d’invertebrats i d’esquelets de vertebrats: aplicacions. Circular Institució Catalana D’Història Natural, 1, 1–9.

  28. Engelmann, W.E., Fritsche, J., Gunther, R. & Obst, F.J. (1993) Lurche und Kriechtiere Europas. Neumann Verlag Radebeul, 420 pp.

  29. Franzen, M. (1991) Beobachtungen zurphytophagen Ernährung von Lacerta rudis und Lacerta clarkorum. Die Eidechse, Bonn/Bremen, 2, 22–23.

  30. Fu, J (1999) Phylogeny of Lacertid Lizards (Squamata: Lacertidae) and the Evolution of Unisexuality. PhD Degree Thesis, Department of Zoology The University of Toronto, Toronto, Ontario, 183 pp.

  31. Grechko, V.V., Ciobanu, D.G., Darevsky, I.S., Kosushkin, S.A. & Kramerov, D.A. (2006) Molecular evolution of satellite DNA repeats and speciation of lizards of the genus Darevskia (Sauria: Lacertidae). Genome, 49 (10), 1297–1307.  https://doi.org/10.1139/g06-089

  32. Hintze, J. (2007) NCSS, PASS and GESS. Number Cruncher Statistical Systems. Kaysville, Utah. Available from: http://www.NCSS.com (accessed 12 April 2021)

  33. Ilgaz, Ç. (2007) The morphology, taxonomy, and distribution of specimens of Darevskia clarkorum (Sauria: Lacertidae: Darevskia) collected from Turkey’s Eastern Black Sea Region. Turkish Journal of Zoology, Ankara, Turkey, 31 (4), 325–336.

  34. Kupriyanova, L.A. & Odierna, G. (2002) Perspective approach to the problem of karyotype stability: the structure of chromosomes of two-sex and same-sex species of lizards of the family Lacertidae (allo-sympatric and net speciation). Evolutionary biology: Proceedings of the II International Conference `The problem of species and speciation. Tomsk. Tomsk State University, 2, 238–254

  35. Kurnaz, M. & Kutrup, B. (2018) Southernmost locality for endangered lizard, Darevskia clarkorum (Lacertidae, Squamata) from Eastern Black Sea Coast of Turkey. Nature Conservation Research, 3 (Supplement 1), 136–139.  https://doi.org/10.24189/ncr.2018.054

  36. Legendre, P. & Legendre, L. (1998) Numerical Ecology. Elsevier Science B. V., Amsterdam, 853 pp.

  37. Mantel, N.A. (1967) The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.

  38. Murphy, R.W., Fu, J., MacCulloch, R.D., Darevsky, I.S. & Kupriyanova, L.A. (2000) A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards. Zoological Journal of the Linnean Society, 130, 527–549. https://doi.org/10.1111/j.1096-3642.2000.tb02200.x

  39. Panner, T. (2001) Kurzebemerkungen zurhaltung und zucht von Clarks Felseidechse, Darevskia clarkorum (Darevsky & Vedmederja, 1977). Die Eidechse, 12, 65–70.

  40. Rohlf, J. (2000) NTSYSpc. Version 2.1. UserGuide. Exeter Software ed., Setauket, New York, 38 pp.

  41. Schmidtler, J.F. (1986) Orientalisches maragdeidechsen: 3. Klimaparallele Pholidosevariation. Salamandra, 22 (4), 242–258.

  42. Schmidtler, J.F., Heckes, U., Bischoff, W. & Franzen, M. (2002) Höhenabhängige merkmalsvariation bei Felseidechsen des Darevskia clarkorum (Darevsky & Vedmerja, 1977) / D. dryada (Darevsky & Tuniyev, 1997)—Komplexes: Ein Fall von klimaparalleler pholidosevariation? Faunistische Abhandlungen Staatliches Museum für Tierkunde in Dresden, 23 (8), 141–156.

  43. Seaby, R.M.H. & Henderson, P.A. (2019) Community Analysis Package 6.0. Pisces Conservation Ltd, Lymington, 164 pp. Available from: http://www.pisces-conservation.com (accessed 12 April 2021)

  44. Sindaco, R., Venchi, A., Carpaneto, G.M. & Bologna, M. (2000) The reptiles of Anatolia: A checklist and zoogeographical analysis. Biogeographia, 21, 441–554. https://doi.org/10.21426/B6110017

  45. Smouse, P.E., Long, J.C. & Sokal, R.R. (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Systematic Zoology, 35, 627–632. https://doi.org/10.2307/2413122

  46. Sokal, R.R. (1979) Testing statistical significance of geographic variation patterns. Systematic Zoology, 28, 227–231. https://doi.org/10.2307/2412528

  47. Sokal, R.R. & Rohlf, J. (1995) Biometry: The principles and practice of statistics in biological research. 3rd Edition. W.H. Freeman and Company, New York, 887 pp.

  48. Steinhauser, F. (1970) Climatic Atlas of Europe. WMO-UNESCO-Cartographia, Budapest, 6 pp, 27 maps.

  49. Szczerbak, N.N. (2003) Guide to the Reptiles of the Western Palearctic. Krieger, Malabar, 260 pp.

  50. Tarkhnishvili, D.N. (2012) Evolutionary history, habitats, diversification, and speciation in Caucasian rock lizards. In: Jenkins, O.P. (Ed.), Advances in Zoology Research. Vol. 2. Nova Science Publishers, Hauppeauge, pp 79–120.

  51. Taylor, W.R. (1967) An enzyme method of clearing and staining small vertebrates. Proceedings United States National Museum, Smithsonian Institute, 122 (3596), 1–17. https://doi.org/10.5479/si.00963801.122-3596.1

  52. Tuniyev, B. (1990) On the independence of the Colchis Center of Amphibian and Reptile Speciation. Asiatic Herpetological Research, 3, 67–84.