Skip to main content Skip to main navigation menu Skip to site footer
Article
Published: 2021-09-28

A new species of the sun coral genus Tubastraea (Scleractinia: Dendrophylliidae) from Hong Kong

Department of Biology and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
Department of Biology and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China
Department of Biology and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong Baptist University, Hong Kong, China. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
Coelenterata scleractinian coral azooxanthellate ahermatypic coral dendrophylliid South China Sea

Abstract

Tubastraea, commonly known as sun coral, is a genus of brightly coloured azooxanthellate corals in the family Dendrophylliidae. The diversity of this genus is low, with only seven recognized species. Herein, we describe Tubastraea megacorallita sp. nov. from Hong Kong based on morphological and molecular analyses. This new species exhibits several characteristics of the genus including being colonial, having a rough texture of corallum and no epitheca. It can be distinguished from its congenerics by bigger corallites, and the Pourtalès plan arrangement of its septa. The rDNA gene sequences (consisting of ITS1, 5.8S, ITS2, 18S and 28S) showed 2.45–5.18% divergence from those of its closest relatives, T. coccinea and T. micranthus.

 

References

  1. Arrigoni, R., Kitano, Y.F., Stolarski, J., Hoeksema, B.W., Fukami, H., Stefani, F., Galli, P., Montano, S., Castoldi, E. & Benzoni, F. (2014) A phylogeny reconstruction of Dendrophylliidae (Cnidaria, Scleractinia) based on molecular and micromorphological criteria, and its ecological implications. Zoologica Scripta, 43, 661–688. https://doi.org/10.1111/zsc.12072
    Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A. & Pevzner, P.A. (2012) SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology, 19, 455–477. https://doi.org/10.1089/cmb.2012.0021
    Bolger, A.M., Lohse, M. & Usadel, B. (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
    Cairns, S.D. (1991) A revision of the ahermatypic Scleractinia of the Galapagos and Cocos Islands. Smithsonian Contributions to Zoology, 504, 1–44. https://doi.org/10.5479/si.00810282.504
    Cairns, S.D. (1994) Scleractinia of the Temperate North Pacific. Smithsonian Contributions to Zoology, 557, 1–150. https://doi.org/10.5479/si.00810282.557.i
    Cairns, S.D. (2001) A generic revision and phylogenetic analysis of the Dendrophylliidae (Cnidaria: Scleractinia). Smithsonian Contributions to Zoology, 615, 1–75. https://doi.org/10.5479/si.00810282.615
    Cairns, S.D. & Kitahara, M.V. (2012) An illustrated key to the genera and subgenera of the recent azooxanthellate Scleractinia (Cnidaria, Anthozoa), with an attached glossary. ZooKeys, 227, 1–47. https://doi.org/10.3897/zookeys.227.3612
    Cairns, S.D. & Zibrowius, H. (1997) Cnidaria Anthozoa: azooxanthellate Scleractinia from the Philippine and Indonesian regions. Memoires du Museum National d’Histoire Naturelle, 172, 27–243.
    Capel, K.C.C., López, C., Moltó-Martín, I., Zilberberg, C., Creed, J.C., Knapp, I.S.S., Hernández, M., Forsman, Z.H., Toonen, R.J. & Kitahara, M.V. (2020) Atlantia, a new genus of Dendrophylliidae (Cnidaria, Anthozoa, Sclerctinia) from the eastern Atlantic. PeerJ, 8, e8633. https://doi.org/10.7717/peerj.8633
    Chan, A.L.K., Chan, K.K., Choi, C.L.S., McCorry, D., Lee, M.W. & Ang, P.J. (2005) Field guide to hard corals of Hong Kong. Friends of the Country Parks, Hong Kong, 373 pp.
    Edmondson, C.H. (1933) Reef and shore fauna of Hawaii. Bishop Museum Press, Hawaii, 381 pp.
    Edgar, R.C. (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340
    Faucci, A., Toonen, R.J. & Hadfield, M.G.A. (2007) Host shift and speciation in a coral feeding nudibranch. Proceedings of the Royal Society B: Biological Sciences, 274, 111–119. https://doi.org/10.1098/rspb.2006.3685
    Fritts-Penniman, A.L., Gosliner, T.M., Mahardika, G.N. & Barber, P.H. (2020) Cryptic ecological and geographic diversification in coral-associated nudibranchs. Molecular Phylogenetics and Evolution, 144, 106698. https://doi.org/10.1016/j.ympev.2019.106698
    Gittenberger, A., Gittenberger, E. (2005) A hitherto unnoticed adaptive radiation: epitoniid species (Gastropoda: Epitoniidae) associated with corals (Scleractinia). Contributions to Zoology, 74, 125–203.
    https://doi.org/10.1163/18759866-0740102009
    Gittenberger, A. & Hoeksema, B.W. (2013) Habitat preferences of coral-associated wentletrap snails (Gastropoda: Epitoniidae). Contributions to Zoology, 82, 1–25.
    https://doi.org/10.1163/18759866-08201001
    Harris, L.G. (1968) Notes on the biology and distribution of the aeolid nudibranch (Gastropoda), Phestilla melanobrachia Bergh, 1874. Publications of the Seto Marine Biological Laboratory, 16, 193–198. https://doi.org/10.5134/175544
    Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2017) UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35, 518–522. https://doi.org/10.1093/molbev/msx281
    Hoeksema, B.W. & Cairns S (2020) World List of Scleractinia, Dendrophylliidae Gray, 1847. Available from: http://www.marinespecies.org/aphia.php?p=taxdetails&id=135074 (accessed 12 December 2020)
    Hu, J., Zhang, Y., Xie, J.Y. & Qiu, J.W. (2020a) A new species of predatory nudibranch (Gastropoda: Trinchesiidae) of the coral Pavona decussata. Zoological Studies, 59, 30. http://doi:10.6620/ZS.2020.59-30
    Hu, J., Zhang, Y., Yiu, S.K.F., Xie, J.Y. & Qiu, J.W. (2020b) A new species of predatory nudibranch (Gastropoda: Trinchesiidae) of the scleractinian coral Goniopora. Zoological Studies, 59, 62. http://doi:10.6620/ZS.2020.59-62.
    Huelsenbeck, J.P. & Rannala, B. (2004) Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology, 53, 904–913. https://doi.org/10.1080/10635150490522629
    Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
    Kitahara, M.V., Cairns, S.D., Stolarski, J., Blair, D. & Miller, D.J. (2010) A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PLoS ONE, 5, e11490. https://doi.org/10.1371/journal.pone.0011490
    Kohler, K.E.& Gill, S.M. (2006) Coral Point Count with Excel extensions (CPCe): A visual basic program for the determination of coral and substrate coverage using random point count methodology. Computers and Geosciences, 32, 1259–1269. https://doi.org/10.1016/j.cageo.2005.11.009
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549. https://doi.org/10.1093/molbev/msy096
    Lam, K., Morton, B., Hodgson, P. (2008) Ahermatypic corals (Scleractinia: Dendrophylliidae, Oculinidae and Rhizangiidae) recorded from submarine caves in Hong Kong. Journal of Natural History, 42, 729–747. https://doi.org/10.1080/00222930701862724
    Nemenzo, F. (1960) Systematic studies on Philippine shallow water scleractinians, IV: Suborder Dendrophylliida. Natural and Applied Science Bulletin, 18, 1–21.
    Nguyen, L.T., Schmidt, H.A., von Haeseler, A. & Minh, B.Q. (2015) IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32, 268–274. https://doi.org/10.1093/molbev/msu300
    Ogawa, K. & Takahashi, K. (1993) A revision of Japanese ahermatypic corals around the coastal region with a guide to identification. I. Genus Tubastraea. Nankiseibutu (The Nanki Biological Society), 35, 95–109. [in Japanese]
    Okonechnikov, K., Golosova, O., Fursov, M., Varlamov, A., Vaskin, Y., Efremov, I., German Grehov, O.G., Kandrov, D., Rasputin, K., Syabro, M. & Tleukenov, T. (2012) Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics, 28, 1166–1167. https://doi.org/10.1093/bioinformatics/bts091
    Paradis, E. & Schliep, K. (2019) ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
    Ronquist, F. & Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
    Rowlett, J. (2020) Indo-Pacific Corals. Self-published, Rowlett, 809 pp.
    Scott, P.J.B. (1984) The corals of Hong Kong. Hong Kong University Press, Hong Kong, 112 pp.
    Shearer, T.L. & Coffroth, M.A. (2008) DNA BARCODING: barcoding corals: limited by interspecific divergence, not intraspecific variation. Molecular Ecology Resources, 8, 247–255.
    https://doi.org/10.1111/j.1471-8286.2007.01996.x
    Song, J.I. (1982) A study on the classification of the Korean Anthozoa 7. Scleractinia (Hexacorallia). Korean Journal of Zoology, 25 (3), 131–148.
    Stewart, C.N. & Via, L.E. (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques, 14 (5), 748–750.
    Todd, P.A. (2008) Morphological plasticity in scleractinian corals. Biological Reviews, 83, 315–337. https://doi.org/10.1111/j.1469-185x.2008.00045.x
    Vaidya, G., Lohman, D.J. & Meier, R. (2011) Cladistics multi-gene datasets with character set and codon information. Cladistics, 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
    Wells, J.W. (1982) Notes on Indo-Pacific scleractinian corals, Part 9: New corals from the Galapagos Islands. Pacific Science, 36 (2), 211–219.
    Wells, J.W. (1983) Annotated list of the scleractinian corals of the Galápagos. University of California Press, Berkley, California, 291 pp.
    Wickham, H. (2016) ggplot2: Elegant graphics for data analysis. Springer, New York, 211 pp. https://doi.org/10.1007/978-3-319-24277-4_9
    Xu, T., Feng, D., Tao, J. & Qiu, J.W. (2019) A new species of deep-sea mussel (Bivalvia: Mytilidae: Gigantidas) from the South China Sea: morphology, phylogenetic position, and gill-associated microbes. Deep Sea Research Part I: Oceanographic Research Papers, 146, 79–90.
    https://doi.org/10.1016/j.dsr.2019.03.001
    Yeung, Y.H., Xie, J.Y., Kwok, C.K., Kei, K., Ang Jr., P., Chan, L.L., Dellisanti, W., Cheang, C.C., Chow, K.W. & Qiu, J.W. (2021) Hong Kong’s subtropical scleractinian coral communities: Baseline, environmental drivers and management implications. Marine Pollution Bulletin, 167, 112289. https://doi.org/10.1016/j.marpolbul.2021.112289
    Yiu, S.K.F., Chung, S.S.W. & Qiu, J.W. (2021) New observations on the corallivorous nudibranch Phestilla melanobrachia Bergh, 1874 (Gastropoda: Trinchesiidae): morphology, dietary spectrum, and early development. Journal of Molluscan Studies. [accepted for publication]
    Yu, G., Smith, D.K., Zhu, H., Guan, Y. & Lam, T.T.Y. (2017) GGTREE: An R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 9, 28–36. https://doi.org/10.1111/2041-210X.12628