Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2021-11-24
Page range: 369-383
Abstract views: 333
PDF downloaded: 196

A new phosphatized ophiuroid from the lower Triassic of Nevada and its position in the evolutionary history of the Ophiuroidea (Echinodermata)

Natural History Museum Luxembourg, Department of Paleontology, 25 rue Münster, 2160 Luxembourg City, Luxembourg.
Department of Geosciences, Smith College, Northampton, MA 01063, USA.
Department of Geosciences, Smith College, Northampton, MA 01063, USA.
Echinodermata brittle star end-Permian mass extinction phylogeny fossil

Abstract

The Lower Triassic fossil record of brittle stars is relatively rich, yet most records published to date are based on poorly preserved or insufficiently known fossils. This hampers exhaustive morphological analyses, comparison with recent relatives or inclusion of Early Triassic ophiuroid taxa in phylogenetic estimates. Here, we describe a new ophiuroid from the Lower Triassic of Nevada, preserved as phosphatized skeletal parts and assigned to the new taxon Ophiosuperstes praeparvus gen. et sp. nov Maxwell, V. & Pruss. S.B. This unusual preservation of the fossils allowed for acid-extraction of an entire suite of dissociated skeletal parts, including lateral arm plates, ventral arm plates, vertebrae and various disk plates, thus unlocking sufficient morphological information to explore the phylogenetic position of the new taxon. Bayesian phylogenetic inference suggests a basalmost position of O. praeparvus within the Ophintegrida, sister to all other sampled members of that superorder. The existence of coeval but more derived ophiuroids suggests that O. praeparvus probably represents a member of a more ancient stem ophintegrid group persisting into the Early Triassic.

 

References

  1. Botting, J.P., Brayard, A. & The Paris Biota Team (2019) A late-surviving Triassic protomonaxonid sponge from the Paris Biota, Idaho, USA. Geobios, 54, 5−11. https://doi.org/10.1016/j.geobios.2019.04.006
    Brayard, A., Jenks, J.F., Bylund, K.G. & The Paris Biota Team. (2019) Earliest Spathian ammonoids and nautiloids from the Paris Biota and Bear Lake area: significance for regional-to-global stratigraphy and correlation. Geobios, 54, 13−36.
    https://doi.org/10.1016/j.geobios.2019.04.007
    Brayard, A., Krumenacker, L.J., Botting, J.P., Jenks, J.F., Bylund, K.G., Fara, E., Vennin, E., Olivier, N., Goudemand, N., Saucède, T., Charbonnier, S., Romano, C., Doguzhaeva, L., Thuy, B., Hautmann, M., Stephen, D.S., Thomazo, C. & Escarguel, G. (2017) Unexpected Early Triassic marine ecosystem and the rise of the Modern evolutionary fauna. Science Advances, 3, e1602159. https://doi.org/10.1126/sciadv.1602159
    Broglio Loriga, C. & Berti Cavicchi, A. (1972) Praeaplocoma hessi n. gen., n. sp., un Ofiura del Werfeniano (Trias Inferiore) del Gruppo della Costabella, Dolomiti. Memorie Geopaleontologiche dell’ Universita di Ferrara, 2 (1), 185−197.
    Charbonnier, S., Brayard, A. & The Paris Biota Team (2019) New thylacocephalans from the Early Triassic Paris Biota (Idaho, U.S.A.). Geobios, 54, 37−43. https://doi.org/10.1016/j.geobios.2019.04.005
    Chen, Z.Q. & Mcnamara, K.J. (2006) End-Permian extinction and subsequent recovery of the Ophiuroidea (Echinodermata). Palaeogeography, Palaeoclimatology, Palaeoecology, 236, 321−344. https://doi.org/10.1016/j.palaeo.2005.11.014
    Chen, Z.Q., Shi, G.R. & Kaiho, K. (2004) New ophiuroids from the Permian/Triassic boundary beds of South China. Palaeontology, 47, 1301−1312. https://doi.org/10.1111/j.0031-0239.2004.00406.x
    Detre, C. & Mihály, S. (1987) Két Újabb Ophiuroida Lelet A Balaton-Felvidék Triászából. A Magyar Állami Földtani Intézet Évi Jelentése Az, 1985, 449−452.
    Doguzhaeva, L.A., Brayard, A., Goudemand, N., Krumenacker, L.J., Jenks, J.F., Bylund, K.G., Fara, E., Olivier, N., Vennin, E. & Escarguel, G. (2018) An Early Triassic gladius associated with soft tissue remains from Idaho, USA-a squid-like coleoid cephalopod at the onset of Mesozoic Era. Acta Palaeontologica Polonica, 63, 341−355. https://doi.org/10.4202/app.00393.2017
    d’Orbigny, A.D. (1852) s.n. In: Cours élémentaire de paléontologie et de géologie stratigraphiques. 2 (2). Masson, Paris, pp. 381−849.
    Erwin, D.H. (1993) The Great Paleozoic Crisis: life and death in the Permian. Columbia University Press, New York, New York, 327 pp.
    Freeman, R.L., Dattilo, B.F. & Brett, C.E. (2019) An integrated stratinomic model for the genesis and concentration of ‚small shelly fossil‘‐style phosphatic microsteinkerns in not‐so‐exceptional conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 535, 109344. https://doi.org/10.1016/j.palaeo.2019.109344
    Freeman, R.L., Dattilo, B.F., Morse, A., Blair, M., Felton, S. & Pojeta, J. (2013) The ‚Curse Of Rafinesquina:‘ negative taphonomic feedback exerted by strophomenid shells on storm‐buried Lingulids In The Cincinnatian Series (Katian, Ordovician) of Ohio. Palaois, 28, 359−372. https://doi.org/10.2110/palo.2012.p12-094r
    Gorzelak, P., Krzykawski, T. & Stolarski, J. (2016) Diagenesis of echinoderm skeletons: Constraints on paleoseawater Mg/Ca reconstructions. Global and Planetary Change, 144, 142−157. https://doi.org/10.1016/j.gloplacha.2016.07.010
    Hagdorn, H. (2018) Slipped through the bottleneck: Lazarechinus mirabeti gen. et sp. nov., a Paleozoic-like echinoid from the Triassic Muschelkalk (late Anisian) of East France. Paläontologische Zeitschrift, 92, 267−282. https://doi.org/10.1007/s12542-017-0393-1
    Hoffmann, R., Hautmann, M., Wasmer, M. & Bucher, H. (2013) Palaeoecology of the Spathian Virgin Formation (Utah, USA) and Its Implications for the Early Triassic Recovery. Acta Palaeontologica Polonica, 58, 149−173.
    Huelsenbeck, J.P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754−755. https://doi.org/10.1093/bioinformatics/17.8.754
    Lewis, P.O. (2001) A likelihood approach to estimating phylogeny from discrete morphological character data. Systematic Biology, 50, 913−925. https://doi.org/10.1080/106351501753462876
    Marzolf, J.E. (1993) Palinspastic reconstruction of early Mesozoic sedimentary basins near the latitude of Las Vegas; implications for the early Mesozoic Cordilleran cratonal margin. In: Dunne, G.C. & McDougall, K. (Eds.), Mesozoic Paleogeography of the Western United States, II, SEPM, Book 71, pp 433−462.
    Matsumoto, H. (1915) A new classification of the Ophiuroidea: with description of new genera and species. Proceedings of the Academy of Natural Sciences of Philadelphia, 68, 43−92.
    Maxwell, V., Thuy, B. & Pruss, S.B. (2020) An Early Triassic small shelly fossil‐style assemblage from the Virgin Limestone Member, Moenkopi Formation, western United States. Lethaia, 54, 368−377. https://doi.org/10.1111/let.12409
    Milam, M.J., Meyer, D.L., Datillo, B.F. & Hunda, B.R. (2017) Taphonomy of an Ordovician crinoid lagerstätte from Kentucky. Palaios, 32, 166−180. https://doi.org/10.2110/palo.2016.048
    O‘Hara, T.D., Hugall, A.F., Thuy, B. & Moussalli, A. (2014) Phylogenomic Resolution of the Class Ophiuroidea Unlocks a Global Microfossil Record. Current Biology, 24, 1874−1879. https://doi.org/10.1016/j.cub.2014.06.060
    O‘Hara, T.D., Hugall, A.F., Thuy, B., Stöhr, S. & Martynov, A.V. (2017) Restructuring higher taxonomy using broad-scale phylogenomics: The living Ophiuroidea. Molecular Phylogenetics and Evolution, 107, 415−430. https://doi.org/10.1016/j.ympev.2016.12.006
    O‘Hara, T.D., Stöhr, S., Hugall, A.F., Thuy, B. & Martynov, A. (2018) Morphological diagnoses of higher taxa in Ophiuroidea (Echinodermata) in support of a new classification. European Journal of Taxonomy, 416, 1−35. https://doi.org/10.5852/ejt.2018.416
    Picard, E. (1858) Über den Keuper bei Schlotheim in Thüringen und seine Versteinerungen. Zeitschrift für die Gesamten Naturwissenschaften, 11, 425−436.
    Pisera, A. (1994) Echinoderms of the Mójcza Limestone. In: Dzik, J., Olempska, E. & Pisera, A. (Eds.) Ordovician carbonate platform ecosystem of the Holy Cross Mountains, Poland. Palaeontologia Polonica, Warsaw, 53, pp. 283−307.
    Poborski, S.J. (1954) Virgin Formation (Triassic) of the St. George, Utah, area. Geological Society of America Bulletin, 65, 971−1006. https://doi.org/10.1130/0016-7606(1954)65[971:VFTOTS]2.0.CO;2
    Pruss, S.B., Fraiser, M.L. & Bottjer, D.J. (2004) Proliferation of Early Triassic wrinkle structures: implications for environmental stress following the end‐Permian mass extinction. Geology, 35, 461−465. https://doi.org/10.1130/G20354.1
    Pruss, S.B. & Bottjer, D.J. (2004) Late Early Triassic microbial reefs of the western United States: a description and model for their deposition in the aftermath of the end-Permian mass extinction, Palaeogeography, Palaeoclimatology, Palaeoecology, 211, 127−37. https://doi.org/10.1016/j.palaeo.2004.05.002
    Pruss, S.B., Corsetti, F.A. & Bottjer, D.J. (2005) The unusual sedimentary rock record of the Early Triassic: a case study from the southwestern United States. Palaeogeography, Palaeoclimatology, Palaeoecology, 222, 33−52. https://doi.org/10.1016/j.palaeo.2005.03.007
    Reif, D.M. & Slatt, R.M. (1979) Red bed members of the Lower Triassic Moenkopi Formation, southern Nevada; sedimentology and paleogeography of a muddy tidal flat deposit. Journal of Sedimentary Petrology, 49, 869−889. https://doi.org/10.1306/212F7865-2B24-11D7-8648000102C1865D
    Romano, C., Argyriou, T., Krumenacker, L.J. & The Paris Biota Team. (2019) Chondrichthyan teeth from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios, 54, 63−70. https://doi.org/10.1016/j.geobios.2019.04.001
    Saucède, T., Vennin, E., Fara, E., Olivier, N. & The Paris Biota Team. (2019) A new holocrinid (Articulata) from Idaho (USA) highlights the high diversity of Early Triassic crinoids. Geobios, 54, 45−53. https://doi.org/10.1016/j.geobios.2019.04.003
    Schubert, J.K. & Bottjer, D.J. (1995) Aftermath of the Permian‐Triassic mass extinction event: paleoecology of Lower Triassic carbonates in the Western USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 116, 1−39. https://doi.org/10.1016/0031-0182(94)00093-N
    Sepkoski, J.J. Jr. (1981) A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7, 36−53. https://doi.org/10.1017/S0094837300003778
    Smith, A.B., Paterson, G.L.J. & Lafay, B. (1995) Ophiuroid phylogeny and higher taxonomy: morphological, molecular and palaeontological perspectives. Zoological Journal of the Linnean Society, 114, 213−243. https://doi.org/10.1006/zjls.1995.0024
    Stöhr, S., O‘Hara, T.D. & Thuy, B. (2012) Global diversity of Ophiuroidea. PLOS ONE, 7 (3), e31940. https://doi.org/10.1371/journal.pone.0031940
    Svensson, A.M. (1999) Phosphatized echinoderm remains from upper Lower Ordovician strata of northern Öland, Sweden : preservation, taxonomy and evolution. Examensarbete I geologi vid Lunds Universitet, Historisk geologi och paleontologi, 105, 1−60.
    Thompson, J.R., Hu, S., Zhang, Q.Y., Petsios, E., Cotton, L.J., Huang, J.Y., Zhou, C., Wen, W. & Bottjer, D.J. (2018) A new stem group echinoid from the Triassic of China leads to a revised macroevolutionary history of echinoids during the end-Permian mass extinction. Royal Society Open Science, 5, 171548. https://doi.org/10.1098/rsos.171548
    Thuy, B., Escarguel, G. & The Paris Biota Team. (2019) A new brittle star (Ophiuroidea: Ophiodermatina) from the Early Triassic Paris Biota (Bear Lake County, Idaho, USA). Geobios, 54, 55−61. https://doi.org/10.1016/j.geobios.2019.04.004
    Thuy, B., Hagdorn, H. & Gale, A.S. (2017) Paleozoic echinoderm hangovers: Waking up in the Triassic. Geology, 45 (6), 531−534. https://doi.org/10.1130/G38909.1
    Thuy, B., Kutscher, M. & Bartosz, P.J. (2015) A new brittle star from the early Carboniferous of Poland and its implications on Paleozoic modern-type ophiuroid systematics. Acta Palaeontologica Polonica, 60, 923−929. https://doi.org/10.4202/app.00093.2014
    Thuy, B. & Numberger-Thuy, L.D. (2021) Brittlestar diversity at the dawn of the Jenkyns Event (early Toarcian Oceanic Anoxic Event): new microfossils from the Dudelange drill core, Luxembourg. Geological Society, London, Special Publications, 514, 83−119. https://doi.org/10.1144/SP514-2021-3
    Thuy, B. & Stöhr, S. (2011) Lateral arm plate morphology in brittle stars (Echinodermata: Ophiuroidea): new perspectives for ophiuroid micropalaeontology and classification. Zootaxa, 3013, 1−47. https://doi.org/10.11646/zootaxa.3013.1.1
    Thuy, B. & Stöhr, S. (2016) A new morphological phylogeny of the Ophiuroidea (Echinodermata) accords with molecular evidence and renders microfossils accessible for cladistics. PLOS ONE, 11 (5), e0156140. https://doi.org/10.1371/journal.pone.0156140
    Thuy, B. & Stöhr, S. (2018) Unravelling the origin of the basket stars and their allies (Echinodermata, Ophiuroidea, Euryalida). Scientific Reports, 8, 8493. https://doi.org/10.1038/s41598-018-26877-5
    Twitchett, R.J., Feinberg, J.M., O‘Connor, D.D., Alvarez, W. & McCollum, L.B. (2005) Early Triassic Ophiuroids: their paleoecology, taphonomy and distribution. Palaios, 20, 213−223. https://doi.org/10.2110/palo.2004.p04-30
    Twitchett, R.J. & Oji, T. (2005) Early Triassic recovery of echinoderms. Comptes Rendus Paleovol, 4, 531−542. https://doi.org/10.1016/j.crpv.2005.02.006
    Wright, A.M. & Hillis, D.M. (2014) Bayesian Analysis Using a Simple Likelihood Model Outperforms Parsimony for Estimation of Phylogeny from Discrete Morphological Data. PLoS ONE, 9, e109210. https://doi.org/10.1371/journal.pone.0109210