Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-07-21
Page range: 207-221
Abstract views: 2552
PDF downloaded: 76

Taxonomic reappraisal of Hynobius tokyoensis, with description of a new species from northeastern Honshu, Japan (Amphibia: Caudata)

Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Kyoto, 606-8501 JAPAN
Civil Engineering and Eco-Technology Consultants, Osaka Branch, Minami-senba 1-15-14, Chuo-ku, Osaka 542-0081, JAPAN
Department of Zoology, National Museum of Nature and Science, Tokyo, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, JAPAN
Graduate School of Human and Environmental Studies, Kyoto University, Yoshida Niho. Graduate School of Global Environmental Studies, Kyoto University, Yoshida-Honmachi, Kyoto, 606-8501 JAPAN nmatsu-cho, Kyoto, 606-8501 JAPAN
Amphibia eastern Japan new Hynobius nuDNA phylogeny taxonomy Urodela

Abstract

Previous phylogenetic studies based on mitochondrial DNA data have consistently suggested that Hynobius tokyoensis consists of two major clades, clade A (northern clade) and clade B (southern clade). In this study, we newly estimated their population genetic structure and phylogenetic relationships by nuclear SNPs, and the results suggested heterospecific relationships of the two mitochondrial clades, without present hybridization in between. They were also recognized as morphologically different. The type locality of H. tokyoensis is in Tokyo Prefecture, and therefore clade B corresponds to H. tokyoensis sensu stricto, leaving clade A without available scientific name. We, thus, describe the clade A from northeastern Kanto to southern Tohoku as a new species Hynobius sengokui. The new species is distinguished from H. tokyoensis by its relatively longer axilla-groin distance, shorter trunk, and deeper vomerine teeth series, and is estimated to have diverged from it during the late Pliocene.

 

References

  1. Aoki, G., Matsui, M. & Nishikawa, K. (2013) Mitochondrial cytochrome b phylogeny and historical biogeography of the Tohoku salamander, Hynobius lichenatus (Amphibia, Caudata). Zoological Science, 30, 167–173. https://doi.org/10.2108/zsj.30.167
    Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. & Buckler, E.S. (2007) TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308
    Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, 884–890. https://doi.org/10.1093/bioinformatics/bty560
    Hasumi, M. & Iwasawa, H. (1987) Geographic variation in morphorogical characters of the Japanese salamander, Hynobius lichenatus. Scientific Report of Niigata University Series D Biology, 24, 15–30.
    Hayashi, Y. & Kusano, T. (2006) Local genetic variation of the salamander, Hynobius tokyoensis, based on the mitochondrial D-loop HV2 region. Bulletin of the Herpetological Society of Japan, 2006, 1–8.
    Kaizuka, S., Koike, K., Endo, K., Yamazaki, H. & Suzuki, T. (Eds.) (2000) Geomorphology of Kanto and Izu-Ogasawara. Regional Geomorphology of the Japanese Islands. Vol. 4. University of Tokyo Press, Tokyo, 376 pp.
    Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
    Kusano, T. (1981) Growth and survival rate of the larvae of Hynobius nebulosus tokyoensis Tago (Amphibia, Hynobiidae). Population Ecology, 23, 360–378. https://doi.org/10.1007/BF02515637
    Kusano, T. (1982) Postmetamorphic growth, survival, and age at first reproduction of the salamander, Hynobius nebulosus tokyoensis Tago in relation to a consideration on the optimal timing of first reproduction. Population Ecology, 24, 329–344. https://doi.org/10.1007/BF02515580
    Kusano, T. (2016) Predicting habitat suitability for the Tokyo salamander, Hynobius tokyoensis, using species distribution modeling. Bulletin of the Herpetological Society of Japan, 2016, 135–146.
    Kusano, T. & Inoue, M. (2008) Long-term trends toward earlier breeding of Japanese amphibians. Journal of Herpetology, 42, 608–614. https://doi.org/10.1670/08-002R1.1
    Kusano, T., Kawakami, Y. & Mitarai, N. (2014) Tokyo salamander: changes in the past ten years. Tokyo Salamander Research Society, Tokyo. [unknown pagination]
    Kusano, T. & Miyashita, K. (1984) Dispersal of the salamander, Hynobius nebulosus tokyoensis. Journal of Herpetology, 18, 349–353. https://doi.org/10.2307/1564094
    Kusano, T., Ueda, T. & Nakagawa, H. (2006) Body size and age structure of breeding populations of the Japanese salamander, Hynobius tokyoensis (Caudata: Hynobiidae). Current Herpetology, 25, 7–78. https://doi.org/10.3105/1345-5834(2006)25[71:BSAASO]2.0.CO;2
    Matsui, M. (1987) Isozyme variation in salamanders of the nebulosus-lichenatus complex of the genus Hynobius from eastern Honshu, Japan, with a description of a new species. Japanese Journal of Herpetology, 12, 50–64. https://doi.org/10.5358/hsj1972.12.2_50
    Matsui, M., Misawa, Y. & Nishikawa, K. (2009) Morphological variation in a Japanese salamander, Hynobius kimurae (Amphibia, Caudata). Zoological Science, 26, 87–95. https://doi.org/10.2108/zsj.26.87
    Matsui, M., Misawa, Y., Nishikawa, K. & Shimada, T. (2017) A new species of lentic breeding salamander (Amphibia, Caudata) from central Japan. Current Herpetology, 36, 116–126. https://doi.org/10.5358/hsj.36.116
    Matsui, M., Nishikawa, K., Tanabe, S. & Misawa, Y. (2001) Systematic study of Hynobius tokyoensis from Aichi Prefecture, Japan: a biochemical survey (Amphibia: Urodela). Comparative Biochemistry and Physiology B, 130, 181–189.
    Matsui, M., Okawa, H., Nishikawa, K., Aoki, G., Eto, K., Yoshikawa, N., Tanabe, S., Misawa, Y. & Tominaga, A. (2019) Systematics of the widely distributed Japanese clouded salamander, Hynobius nebulosus (Amphibia: Caudata: Hynobiidae), and its closest relatives. Current Herpetology, 38, 32–90. https://doi.org/10.5358/hsj.38.32
    Matsui, M., Tominaga, A., Hayashi, T., Misawa, Y. & Tanabe, S. (2007) Phylogenetic relationships and phylogeography of Hynobius tokyoensis (Amphibia: Caudata) using complete sequences of cytochrome b and control region genes of mitochondrial DNA. Molecular Phylogenetics and Evolution, 44, 204–216. https://doi.org/10.1016/j.ympev.2006.11.031
    Matsui, M., Yoshikawa, N. & Nishikawa, K. (2021) Hynobius tokyoensis. The IUCN Red List of Threatened Species, 2021, e.T59103A177612384. https://doi.org/10.2305/IUCN.UK.2021-1.RLTS.T59103A177612384.en
    Misawa, Y. (1989) The method of counting costal grooves. In: Matsui, M., Hikida, T. & Goris, R. C. (Eds.), Current Herpetology in East Asia, Herpetological Society of Japan, Kyoto, pp. 129–134.
    Nakamura, K. & Uéno, S. (1963) Japanese Reptiles and Amphibians in Colour. Hoikusha, Osaka, 214 pp.
    Nishikawa, K., Matsui, M., Tanabe, S. & Sato, S. 2007. Morphological and allozymic variation in Hynobius boulengeri and H. stejnegeri (Amphibia: Urodela: Hynobiidae). Zoological Science, 24, 752–766. https://doi.org/10.2108/zsj.24.752
    R Development Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: http://www.R-project.org (accessed 4 July 2022)
    Rancilhac, L., Irisarri, I., Angelini, C., Arntzen, J.W., Babik, W., Bossuyt, F., Künzel, S., Lüddecke, T., Pasmans, F., Sanchez, E., Weisrock, D., Veith, M., Wielstra, B., Steinfartz, S., Hofreiter, M., Philippe, H. & Vences, M. (2021) Phylotranscriptomic evidence for pervasive ancient hybridization among Old World salamanders. Molecular Phylogenetics and Evolution, 155, 106967. https://doi.org/10.1016/j.ympev.2020.106967
    Sato, I. (1943) A Monograph of the Tailed Batrachians of Japan. Nippon Shuppan-sha, Osaka, 520 pp.
    Sugawara, H., Kusano, T. & Hayashi, F. (2016) Fine-scale genetic differentiation in a salamander Hynobius tokyoensis living in fragmented urban habitats in and around Tokyo, Japan. Zoological Science, 33, 476–484. https://doi.org/10.2108/zs150196
    Tago, K. (1931) The Newt and the Salamander. Unsodo, Kyoto, 210 pp.
    Terui, S. & Tokuda, T. (2021) Fact of sales of Hynobius tokyoensis by internet auction and effect of designation as "designated Class 2 nationally endangered species of wild fauna and flora." Bulletin of the Herpetological Society of Japan, 2021, 52–58.
    Weisrock, D.W., Macey, J.R., Ugurtas, I.H., Larson, A. & Papenfuss, T.J. (2001) Molecular phylogenetics and historical biogeography among salamandrids of the “true” salamander clade: rapid branching of numerous highly divergent lineages in Mertensiella luschani associated with the rise of Anatolia. Molecular Phylogenetics and Evolution, 18, 434–448. https://doi.org/10.1006/mpev.2000.0905
    Yoshikawa, N., Matsui, M., Nishikawa, K., Kim, J.B. & Kryukov, A. (2008) Phylogenetic relationships and biogeography of the Japanese clawed salamander, Onychodactylus japonicus (Amphibia: Caudata: Hynobiidae), and its congener inferred from the mitochondrial cytochrome b gene. Molecular Phylogenetics and Evolution, 49, 249–259. https://doi.org/10.1016/j.ympev.2008.07.016