Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2022-09-12
Page range: 254-272
Abstract views: 168
PDF downloaded: 12

Incorporation of Turkish Hyalopterus spp. into recent species reassessment based on their molecular and morphometric features

Nigde Ömer Halisdemir University, Science and Art Faculty, Biotechnology Department, 51100, Niðde, Turkey.
Nigde Ömer Halisdemir University, Science and Art Faculty, Biotechnology Department, 51100, Niðde, Turkey.
Hemiptera COI Hyalopterus Morphometry Phylogeny

Abstract

The Hyalopterus group is a Mediterranean originated genus and Turkey is one of the important distribution pathways of the species belonging to this genus. Up to date, Hyalopterus amygdali (from host plant Prunus dulcis), Hyalopterus pruni (from Prunus domestica) and Hyalopterus arundiniformis (from Prunus armeniaca and Prunus persica) are species distinctively defined in Turkey. Samples of Hyalopterus were collected on P. dulcis, P. domestica, P. armeniaca, and P. persica from Afyonkarahisar, Kütahya, Niðde and Uþak provinces from May 2012 to October 2013. To detect morphological variations related with the preferred host plant and locality, 755 individuals’ morphological features were measured. Maximum likelihood and Bayesian analyses of COI (658 bp.) sequences of Hyalopterus spp were applied to evaluate phylogenetic relationships of the genus members. A median joining haplotype network was evaluated to determine the relationships among haplotypes. The molecular and morphometric analyses indicated that the host plant utilization affects the speciation of Hyalopterus spp. There are no comprehensive molecular studies about Hyalopterus in Turkey although previous studies conducted on this genus emphasized the importance of studying the Turkish populations to understand host plant relations, distribution route and speciation of this economically important aphid group. Therefore this study aimed to give information about phylogenetic and morphological variability of Hyalopterus spp. and criticize how these findings are incorporated into the recent species reassesment.

 

References

  1. Agarwala, B.K. (2007) Phenotypic plasticity in aphids (Homoptera: Insecta): Component of variation and causative factors. Current Science, 93 (3), 308–313.
    Blackman, R. & Eastop, V. (2021) Aphids on the world’s plants: An online identification and information guide. Available from: http://www.aphidsonworldsplants.info (accessed 28 December 2021)
    Liu, T., Chen, J., Jiang, L. & Qiao, G. (2020) Phylogeny and species reassessment of Hyalopterus (Aphididae, Aphidinae). Zoologica Scripta, 49 (6), 755–767. https://doi.org/10.1111/zsc.12444
    Darriba, D., Taboada, G., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
    Favret, C., Meshram, N.M., Miller, G.L., Nafría, J.M.N. & Stekolshchikov, A.V. (2017) The mealy plum aphid and ýts congeners: a synonymic revision of the prunus-infesting aphid genus Hyalopterus (Hemiptera: Aphididae). Proceeding of the Entomological Society of Washington, 119(4), 565–574. https://doi.org/10.4289/0013-8797.119.4.565
    Folmer, O., Black. M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3 (5), 294–299.
    Görür, G. (2005) The Importance of Phenotypic Plasticity in Herbivorous Insect Speciation. In: Whitman, D. & Ananthakrishnan, T.N. (Eds.), Insects and Phenotypic Plasticity. Science Publishers, Inc., Enfield, New Hampshire.
    Hardy, N.B., Peterson, D.A. & von Dohlen, C.D. (2015) The evolution of life cycle complexity in aphids: ecological optimization, or historical constraint?. Evolution, 69 (6), 1423–1432. https://doi.org/10.1111/evo.12643
    Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054
    Librado, P. & Rozas, J. (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25 (11), 1451–1452. https://doi.org/10.1093/bioinformatics/btp187
    Lozier, J.D., Roderick, G.K., & Mills, N.J. (2007) Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae). Evolution: International Journal of Organic Evolution, 61 (6), 1353–1367. https://doi.org/10.1111/j.1558-5646.2007.00110.x
    Lozier, J.D., Foottit, R.G., Miller, G., Mills, N.J. & Roderick, G.K. (2008) Molecular and morphological evaluation of the aphid genus Hyalopterus Koch (Insecta: Hemiptera: Aphididae), with a description of a new species. Zootaxa, 1688 (1), 1–19. https://doi.org/10.11646/zootaxa.1688.1.1
    Lozier, J.D., Roderick, G.K. & Mills, N.J. (2009) Tracing the invasion history of mealy plum aphid, Hyalopterus pruni (Hemiptera: Aphididae), in North America: a population genetics approach. Biological Invasions, 11, 299–314. https://doi.org/10.1007/s10530-008-9248-8
    Mosco, M.C., Arduino, P., Bullini, L. & Barbagallo, S. (1997) Genetic heterogeneity, reproductive isolation and host preferences in mealy aphids of the Hyalopterus pruni complex (Homoptera, Aphidoidea). Molecular Ecology, 6 (7), 667–670. https://doi.org/10.1046/j.1365-294X.1997.00234.x
    Powell, G., Tosh, C.R. & Hardie, J. (2006) Host plant selection by aphids: Behavioral, evolutionary and applied perspectives. Annual Review of Entomology, 51, 309–330. https://doi.org/10.1146/annurev.ento.51.110104.151107
    Rakauskas, R., Havelka, J. & Zaremba, A. (2013) Mitochondrial COI and morphological specificity of the mealy aphids (Hyalopterus ssp.) collected from different hosts in Europe (Hemiptera, Aphididae) Advances in Hemipterology. ZooKeys, 319, 255–267. https://doi.org/10.3897/zookeys.319.4251
    Rambaut, A. (2009) FigTree v1.3.1: Tree figure drawing tool. Available from: http://tree.bio.ed.ac.uk/software/figtree (accessed 28 December 2021)
    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Lýu, L., Suchard, M. A. &Huelsenbeck, J. P. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space, Systematic Biology, 61 (3), 539–542. https://doi.org/10.1093/sysbio/sys029
    Valenzuela, I., Hoffmann, A.A., Malipatil, M.B., Ridland, P.M. & Weeks, A.R. (2007) Identification of aphid species (Hemiptera: Aphididae: Aphidinae) using a rapid polymerase chain reaction restriction fragment length polymorphism method based on the cytochrome oxidase subunit I gene. Australian Journal of Entomology, 46 (4), 305–312.
    Via, S. (1999) Reproductive isolation between sympatric host races of pea aphids. I. Gene flow restriction and habitat choice. Evolution, 53 (5), 1446–1457. https://doi.org/10.2307/2640891

  2.