Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-03-17
Page range: 101-124
Abstract views: 437
PDF downloaded: 50

A new species of Fusigobius (Teleostei: Gobiidae) from the Red Sea and Gulf of Aden

Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt a.M., Germany. 2Station of Naturalists, Omsk, Russia.
3Natural History Museum Rijeka, Lorenzov prolaz 1, HR–51000 Rijeka, Croatia.
4Marine Biology Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
1Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt a.M., Germany.
Pisces Gobioidei systematics endemics

Abstract

The gobiid species, Fusigobius humerosus sp. nov., is described based on 12 type and 18 non-type specimens collected from the Red Sea and Gulf of Aden. The new species can be distinguished from congeners by a combination of meristic and morphometric characters. The new species was formerly misidentified with F. humeralis: both are characterised by a semitranslucent body; head and body with numerous small dusky orange-yellow spots; a round black spot in humeral region just above base of pectoral fin; and a black spot subequal to pupil diameter at midbase of the caudal fin. However, Fusigobius humerosus sp. nov. differs from F. humeralis by scales on side of nape not extending forward to above posterior margin of preopercle (vs. scales variably extending forward to between above posterior preopercular margin and orbit); first dorsal-fin spine longest (vs. second and third dorsal-fin spines longest); shorter upper jaw; shorter anal-fin spine; and posterior nostril about halfway between orbit and anterior nostril (vs. posterior nostril closer to orbit). The most complete description of the genus Fusigobius is provided. In phylogenetic analyses of publicly available sequences of the barcoding portion of the mitochondrial cytochrome oxidase subunit I (COI) gene, sequences derived from the new species form a separate and well-divergent monophyletic lineage. The resulting COI gene tree further suggests that the new Fusigobius species is phylogenetically most closely related to F. humeralis which forms its sister species in the maximum likelihood tree. Molecular species delimitation of available Fusigobius COI barcodes shows that 19 or 20 hypothetical divergent evolutionary lineages can be deduced depending on the analytical approach (ABGD = 19 and bPTP = 20), indicating a potentially higher taxonomic richness than the presently acknowledged 11 valid species. However, the assignment of available species names for some lineages remains uncertain, highlighting the need for an additional integrative taxonomic research on this genus.

 

References

  1. Al-Rshaidat, M.M., Snider, A., Rosebraugh, S., Devine, A.M., Devine, T.D., Plaisance, L., Knowlton, N. & Leray, M. (2016) Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea. Genome, 59 (9), 724–737. https://doi.org/10.1139/gen-2015-0208
    Agorreta, A., San Mauro, D., Schliewen, U., Van Tassell, J.L., Kovačić, M., Zardoya, R. & Ruber, L. (2013) Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution, 69, 619–633. https://doi.org/10.1016/j.ympev.2013.07.017
    Akihito, Hayashi, M. & Yoshino, T. (1984) Suborder Gobioidei. In: Masuda, H., Amaoka, K., Araga, C. & Uyeno, T. (Eds.), The Fishes of the Japanese Archipelago. Tokai University Press, Tokyo, pp. 236–289.
    Allen, G.R. & Erdmann, M.V. (2012) Reef Fishes of the East Indies, Volume 3. Tropical Reef Research, Perth, pp. 857–1260.
    Atta, C.J., Coker, D.J., Sinclair-Taylor, T.H., DiBattista, J.D., Kattan, A., Monroe, A.A. & Berumen, M.L. (2019) Conspicuous and cryptic reef fishes from a unique and economically important region in the northern Red Sea. PLoS One, 14 (10), e0223365. https://doi.org/10.1371/journal.pone.0223365
    Baldwin, C.C., Weigt, L.A., Smith, D.G. & Mounts, J.H. (2009) Reconciling Genetic Lineages with Species in Western Atlantic Coryphopterus (Teleostei: Gobiidae). Smithsonian Contributions to the Marine Sciences, 38, 111–138.
    Baldwin, C.C. & Robertson, D.R. (2015) A new, mesophotic Coryphopterus goby (Teleostei, Gobiidae) from the southern Caribbean, with comments on relationships and depth distributions within the genus. ZooKeys, 513, 123–142.
    https://doi.org/10.3897/zookeys.513.9998
    Boc, A., Diallo, A.B. & Makarenkov, V. (2012) T-REX: a web server for inferring, validating and visualizing phylogenetic trees and networks. Nucleic Acids Research, 40 (W1), W573–W579. https://doi.org/10.1093/nar/gks485
    Böhlke, J.E. & Robins, C.R. (1960) A revision of the gobioid fish genus Coryphopterus. Proceedings of the Academy of Natural Sciences of Philadelphia, 112, 103–128.
    Chen, I.-S. & Shao, K.-T. (1997) Fusigobius aureus, a new species of gobiid fish (Perciformes, Gobiidae) from Flores Island, Indonesia. Acta Zoologica Taiwanica, 8 (2), 87–92.
    Delrieu-Trottin, E., Williams, J.T., Pitassy, D., Driskell, A., Hubert, N., Viviani, J., Cribb, T.H., Espiau, B., Galzin, R., Kulbicki, M., de Loma, T.L., Meyer, C., Mourier, J., Mou-Tham, G., Parravicini, V., Plantard, P., Sasal, P., Siu, G., Tolou, N., Veuille, M., Weigt, L. & Planes, S. (2019) A DNA barcode reference library of French Polynesian shore fishes. Scientific Data, 6 (1), 114. https://doi.org/10.1038/s41597-019-0123-5
    Frandsen, P.B., Calcott, B., Mayer, C. & Lanfear, R. (2015) Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology, 15 (1), 13. https://doi.org/10.1186/s12862-015-0283-7
    Fricke, R., Eschmeyer, W.N. & Van der Laan, R. (2022) Eschmeyer’s catalog of fishes: genera, species, references. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp (accessed 6 June 2022)
    Fujita, M.K., Leaché, A.D., Burbrink, F.T., McGuire, J.A. & Moritz, C. (2012) Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology and Evolution, 27 (9), 480–488. https://doi.org/10.1016/j.tree.2012.04.012
    Geiger, M.F., Herder, F., Monaghan, M.T., Almada, V., Barbieri, R. & Bariche, M. (2014) Spatial heterogeneity in the Mediterranean Biodiversity Hotspot affects barcoding accuracy of its freshwater fishes. Molecular Ecology Resources, 14 (6), 1210–1221. https://doi.org/10.1111/1755-0998.12257
    Goren, M. (1978) A new gobiid genus and seven new species from Sinai coasts (Pisces: Gobiidae). Senckenbergiana Biologica, 59, 191–203.
    Günther, A. (1877) Andrew Garrett’s Fische der Südsee. Band II, Heft. VI. Journal des Museum Godeffroy, 4 (13), 169–216.
    Hoese, D.H. (1986) Family No. 240: Gobiidae. In: Smith, M.M. & Heemstra, P.C., Smiths’ Sea Fishes. Macmillan South Africa, Johannesburg, pp. 774–807.
    Hoese, D.H. & Obika, Y. (1988) A new gobiid fish, Fusigobius signipinnis, from the western tropical Pacific. Japanese Journal of Ichthyology, 35, 282–288. https://doi.org/10.1007/BF02938428
    Hoese, D.H. & Reader, S. (1985) A new gobiid fish, Fusigobius duospilus, from the tropical Indo-pacific. Special Publication, J.L.B. Smith Institute of Ichthyology, 36, 1–9.
    Hubert, N., Meyer, C.P., Bruggemann, H.J., Guerin, F., Komeno, R.J.L., Espiau, B., Causse, R., Williams, J.T. & Planes, S. (2012) Diversity in Indo-Pacific coral-reef fishes revealed by DNA- barcoding provides new support to the centre-of-overlap hypothesis. PloS One, 7 (3), e28987. https://doi.org/10.1371/journal.pone.0028987
    Hubert, N., Dettai, A., Pruvost, P., Cruaud, C., Kulbicki, M., Myers, R.F. & Borsa, P. (2017) Geography and life history traits account for the accumulation of cryptic diversity among Indo-West Pacific coral reef fishes. Marine Ecology Progress Series, 583, 179–193. https://doi.org/10.3354/meps12316
    Ivanova, N.V., de Waard, J. & Hebert, P.D.N. (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes, 6, 998–1002. https://doi.org/10.1111/j.1471-8286.2006.01428.x
    Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
    Kimmerling, N., Zuqert, O., Amitai, G., Gurevich, T., Armoza-Zvuloni, R., Kolesnikov, I., Berenshtein, I., Melamed, S., Gilad, S., Benjamin, S., Rivlin, A., Ohavia, M., Paris, C.B., Holzman, R., Kiflawi, M. & Sorek, R. (2018) Quantitative species-level ecology of reef fish larvae via metabarcoding. Nature Ecology & Evolution, 2, 306–316. https://doi.org/10.1038/s41559-017-0413-2
    Kovačić, M. (2020) Checklist of gobies (Teleostei: Gobiidae) of the Mediterranean Sea and a key for species identification. Zootaxa, 4877 (1), 75–101. https://doi.org/10.11646/zootaxa.4877.1.3
    Lanfear, R., Calcott, B., Kainer, D., Mayer, C. & Stamatakis, A. (2014). Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology, 14 (1), 82. https://doi.org/10.1186/1471-2148-14-82
    Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution, 34 (3), 772–773. https://doi.org/10.1093/molbev/msw260
    Larson, H.K. (2022) Suborder Gobioidei. In: Heemstra, P.C., Heemstra, E., Ebert, D.A., Holleman, W. & Randall, J.E. (Eds.), Coastal fishes of the Western Indian Ocean, volume 5. South African Institute for Aquatic Biodiversity, Makhanda, pp. 18–202.
    Lips, J., Lips, B. & Roux, J.-M. (2016) Poissons de Djibouti. Université de Djibouti, 248 pp.
    McCulloch, A.R. & Ogilby, J.D. (1919) Some Australian fishes of the family Gobiidae. Records of the Australian Museum, 12 (10), 193–291., pls. 31–37. https://doi.org/10.5962/bhl.title.13606
    Messing, J. (1983) New M13 vectors for cloning. Methods in Enzymology, 101, 20–78. https://doi.org/10.1016/0076-6879(83)01005-8
    Miller, P.J. (1986) Gobiidae. In: Whitehead, P.J.P., Bauchot, M.-L., Hureau, J.-C., Nielsen, J. & Tortonese, E. (Eds.), Fishes of the North-eastern Atlantic and the Mediterranean 3. UNESCO, Paris, pp. 1019–1085. https://doi.org/10.2307/1444931
    Nelson, J.S. (2006) Fishes of the World. 4th Edition. John Wiley & Sons, Hoboken, 601 pp.
    Pentinsaari, M, Vos, R. & Mutanen, M. (2017) Algorithmic single-locus species delimitation: effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Molecular Ecology Resources, 17 (3), 393–404. https://doi.org/10.1111/1755-0998.12557
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21, 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x
    Randall, J.E. (1994) A new genus and six new gobiid fishes (Perciformes: Gobiidae) from Arabian waters. Fauna of Saudi Arabia, 14, 317–340.
    Randall, J.E. (1995) Fusigobius Whitley, a junior synonym of the gobiid fish genus Coryphopterus Gill. Bulletin of Marine Science, 56 (3), 795–798.
    Randall, J.E. (2001) Five new Indo-Pacific gobiid fishes of the genus Coryphopterus. Zoological Studies, 40 (3), 206–225. https://doi.org/10.1007/s10228-001-8111-z
    Randall, J.E. (2005) Reef and shore fishes of the South Pacific: New Caledonia to Tahiti and the Pitcairn Islands. University of Hawai’i, Hawaii, 707 pp.
    Ryanskiy, A. (2022) Red Sea marine life. Andrey Ryanskiy publisher, 200 pp.
    Saruwatari, T., Andres Lopez, J. & Pietsch, T.W. (1997) Cyanine blue: a versatile and harmless stain for specimen observation. Copeia, 1997 (4), 840–841. https://doi.org/10.2307/1447302
    Smith, J.L.B. (1959) Gobioid fishes of the families Gobiidae, Periophthalmidae, Trypauchenidae, Taenioididae and Kraemeriidae of the western Indian Ocean. Ichthyological Bulletin, Department of Ichthyology, Rhodes University, 13, 185–225.
    Stamatakis, A. (2006) RAxML-VI-HPC: Maximum Likelihood-based Phylogenetic Analyses with Thousands of Taxa and Mixed Models”. Bioinformatics, 22 (21), 2688–2690. https://doi.org/10.1093/bioinformatics/btl446
    Stamatakis, A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post Analysis of Large Phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
    Steinke, D., Zemlak, S.Z. & Hebert, P.D.N. (2009) Barcoding Nemo: DNA-Based Identifications for the Ornamental Fish Trade. PloS One, 4 (7), e6300. https://doi.org/10.1371/journal.pone.0006300
    Steinke, D., Connell, A.D. & Hebert, P.D.N. (2016) Linking adults and immatures of South African marine fishes. Genome, 59 (11), 959–967. https://doi.org/10.1139/gen-2015-0212
    Steinke, D., de Waard, J.D., Gomon, M.F., Johnson, J.W., Larson, H.K., Lucanus, O., Moore, G.I., Reader, S. & Ward, R.D. (2017) DNA barcoding the fishes of Lizard Island (Great Barrier Reef). Biodiversity Data Journal, 5, e12409. https://doi.org/10.3897/BDJ.5.e12409
    Thacker, C.E. & Cole, K.S. (2002) Phylogeny and evolution of the gobiid genus Coryphopterus. Bulletin of Marine Science, 70 (3), 837–850.
    Thacker, C.E. & Roje, D.M. (2011) Phylogeny of Gobiidae and identification of gobiid lineages. Systematics and Biodiversity, 9 (4), 329–347.
    https://doi.org/10.1080/14772000.2011.629011
    Thacker, C.E., Thompson, A.R. & Roje, D.M. (2011) Phylogeny and evolution of Indo-Pacific shrimp-associated gobies (Gobiiformes: Gobiidae). Molecular Phylogenetics and Evolution, 59 (1), 168–176.
    https://doi.org/10.1016/j.ympev.2011.02.007
    Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360 (1462), 1847–1857. https://doi.org/10.1098/rstb.2005.1716
    Whitley, G.P. (1930) Additions to the check-list of the fishes of New South Wales. (No. 3). Australian Zoologist, 6 (2), 117–123.
    Winterbottom, R. & Emery, A.R. (1986) Review of the Gobioid fishes of the Chagos Archipelago, central Indian Ocean. Royal Ontario Museum Life Science Contributions, 142, 1–82. https://doi.org/10.5962/bhl.title.52226