Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-05-23
Page range: 401-434
Abstract views: 433
PDF downloaded: 27

Combining morphological and mitochondrial DNA data to describe a new species of Austroniscus Vanhöffen, 1914 (Isopoda, Janiroidea, Nannoniscidae) linking abyssal and hadal depths of the Puerto Rico Trench

University of Łódź; Faculty of Biology and Environmental Protection; Department of Invertebrate Zoology and Hydrobiology; Banacha St. 12/16; Łódź; 90-237; Poland; Senckenberg Research Institute; Department of Marine Zoology; Section Crustacea; Senckenberganlage 25; 60325 Frankfurt; Germany
Museum of Nature; Leibniz Institute for the Analysis of Biodiversity Change (LIB); Centre for Taxonomy and Morphology; Martin- Luther-King-Platz 3; 20146 Hamburg; Germany
Temple University; Biology Department; 1900 North 12th Street; Philadelphia; PA 19122; USA
Integrated Environmental Solutions UG—INES; c/o DZMB; Südstrand 44; 26382 Wilhelmshaven; Germany
German Centre for Marine Biodiversity Research (DZMB); Senckenberg am Meer; Martin-Luther-King-Platz 3; 20146 Hamburg; Germany
Isopoda Integrative taxonomy asellota benthic CLSM deep sea

Abstract

Hadal trenches are perceived as a unique deep-sea ecosystem with fundamentally different communities compared to the nearby abyss. So far, however, scarce information exists about how populations are genetically linked within a trench and about mechanisms for species divergence. The present study presents the morphological and molecular-genetic characterization and description of a new nannoniscid species within the genus Austroniscus Vanhöffen, 1914 obtained from abyssal and hadal depths of the Puerto Rico Trench, NW Atlantic. Samples were collected as part of the Vema-TRANSIT expedition onboard RV Sonne in January 2015. Because of the large depth differences between sampling locations (4,552–8,338 m), we expected to find different species within the genus inhabiting abyssal and hadal sites. Initial morphological examination using traditional light microscopy and Confocal Laser Scanning Microscopy was paired with subsequent molecular analysis based on mtDNA (COI and 16S). Contrary to our assumptions, combined morphological and molecular species delimitation analyses (sGMYC, mPTP, ABGD) revealed the presence of only one species spanning the abyssal and hadal seafloor of the Puerto Rico Trench. In addition, comparison with type material could show that this species belongs to a new species, Austroniscus brandtae n. sp., which is described herein. Incongruence between some species delimitation methods suggesting the presence of multiple species is interpreted as strong genetic population structuring within the trench, which is also supported by the analysis of the haplotype networks. The geographic and bathymetric distribution of Austroniscus species is discussed. The species described herein represents the first in the genus Austroniscus from the Atlantic Ocean and the deepest record of the genus to date, and hence significantly expanding previously known limits of its geographic and bathymetric range.

 

References

  1. Baco, A., Etter, R., Ribeiro, P., von der Heyden, S., Beerli, P. & Kinlan, B.P. (2016) A synthesis of genetic connectivity in deep-sea fauna and implications for marine reserve design. Molecular Ecology. https://doi.org/10.1111/mec.13689 DOI: https://doi.org/10.1111/mec.13689
  2. Beliaev, G.M., & Brueggeman, P.L. (1989) Deep-Sea Ocean Trenches and Their Fauna. Nauka Publishing House, Moscow (1989), 385pp. (Translated to English by Scripps Institution of Oceanography, USA, 2004).
  3. Birstein, J.A. (1962) Über eine neue Art der Gattung Austroniscus (Vanhoeffen) (Crustacea, Isopoda, Asellota) aus grossen Tie-fen der Nord-Westlichen Teiles des Stillen Ozeans. Izdanija Publ Zavoda zo ribarstva, NRM 3 (2), 33–38.
  4. Birstein, J.A. (1970) Additions to the fauna of Isopods (Crustacea, Isopoda) of the Kurile-Kamchatka Trench. Part I. Academy of Sciences of the USSR, P.P. Shirshov Institute of Oceanology, Moscow 86 (Fauna of the Kurile-Kamchatka Trench and its Environment), 292–340.
  5. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, Suchard, M.A., Rambaut, A. & Drummond, A. (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput Biol, 10 (4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537 DOI: https://doi.org/10.1371/journal.pcbi.1003537
  6. Brandt, A., Brenke, N., Andres, H.-G., Brix, S., Guerrero-Kommritz, J., Mühlenhardt-Siegel, U. & Wägele, J.-W. (2005) Diversity of peracarid crustaceans (Malacostraca) from the abyssal plain of the Angola Basin. Organisms, Diversity and Evolution 5, 105–112. https://doi.org/10.1016/j.ode.2004.10.007 DOI: https://doi.org/10.1016/j.ode.2004.10.007
  7. Brandt, A, Gooday, A.J., Brandao, S.N., Brix, S., Brökeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., De Mesel, I., Diaz, R.J., Gillan, D.C., Hilbig, B., Howe, J., Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., Raupach, M. & Vanreusel, A. (2007) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature, 447 (7142), 307. https://doi.org/10.1038/nature05827 DOI: https://doi.org/10.1038/nature05827
  8. Brandt, A., Elsner, N., Brenke, N., Golovan, O., Malyutina, M. V., Riehl, T., Schwabe, E. & Würzberg, L. (2013) Epifauna of the Sea of Japan collected via a new epibenthic sledge equipped with camera and environmental sensor systems. Deep Sea Research Part II: Topical Studies in Oceanography, 86, 43–55. https://doi.org/10.1016/j.dsr2.2012.07.039 DOI: https://doi.org/10.1016/j.dsr2.2012.07.039
  9. Brandt, A., Brix, S., Held, C. & Kihara, T. C. (2014) Molecular differentiation in sympatry despite morphological stasis: deep-sea Atlantoserolis Wägele, 1994 and Glabroserolis Menzies, 1962 from the south-west Atlantic (Crustacea: Isopoda: Serolidae). Zoological Journal of the Linnean Society, 172 (2), 318–359. https://doi.org/10.1111/zoj.12178 DOI: https://doi.org/10.1111/zoj.12178
  10. Brandt, A., Frutos, I., Bober, S., Brix, S., Brenke, N., Guggolz, T., Heitland, N., Malyutina, M., Minzlaff, M., Riehl, R., Schwabe, E., Zinkann, A.N. & Linse, K. (2018) Composition of abyssal macrofauna along the Vema Fracture Zone and the hadal Puerto Rico Trench, northern tropical Atlantic. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 35–44. https://doi.org/10.1016/j.dsr2.2017.07.014 DOI: https://doi.org/10.1016/j.dsr2.2017.07.014
  11. Brix, S., Riehl, T. & Leese, F. (2011) First genetic data for species of the genus Haploniscus Richardson, 1908 (Isopoda: Asellota: Haploniscidae) from neighbouring deep-sea basins in the South Atlantic. Zootaxa, 2838 (1), 79–84. https://doi.org/10.11646/zootaxa.2838.1.5 DOI: https://doi.org/10.11646/zootaxa.2838.1.5
  12. Brix, S., Leese, F., Riehl, T. & Kihara, T.C. (2015) A new genus and new species of Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Marine Biodiversity, 45 (1), 7–61. https://doi.org/10.1007/s12526-014-0218-3 DOI: https://doi.org/10.1007/s12526-014-0218-3
  13. Brix, S., Bober, S., Tschesche, C., Kihara, T. C., Driskell, A. & Jennings, R.M. (2018) Molecular species delimitation and its implications for species descriptions using desmosomatid and nannoniscid isopods from the VEMA fracture zone as example taxa. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 180–207. https://doi.org/10.1016/j.dsr2.2018.02.004 DOI: https://doi.org/10.1016/j.dsr2.2018.02.004
  14. Brix, S., Osborn, K.J., Kaiser, S., Truskey, S.B., Schnurr, S.M., Brenke, N., Malyutina, M. & Martinez Arbizu, P. (2020a) Adult life strategy affects distribution patterns in abyssal isopods–implications for conservation in Pacific nodule areas. Biogeosciences, 17 (23), 6163–6184. https://doi.org/10.5194/bg-17-6163-2020 DOI: https://doi.org/10.5194/bg-17-6163-2020
  15. Brix, S., Taylor, J., Le Saout, M., Mercado-Salas, N.F., Kaiser, S., Lörz, A.-N., Gatzemeier, N., Jeskulke, K., Kürzel, K., Neuhaus, J., Paulus, E., Uhlir, C., Korfhage, S., Bruhn, M., Stein, T., Wilsenack, M., Siegler, V., Schumacher, M., Lux, T., Gärtner, L., Abegg, F., Pieper, M., Bodendorfer, M., Cuno, P., Huusmann, H., Matthiessen, T., Bischof, F. & Suck, I. (2020b) Depth transects and connectivity along gradients in the North Atlantic and Nordic Seas in the frame of the IceAGE project (Icelandic marine Animals: Genetics and Ecology). SONNE -Berichte, Cruise SO276 (MerMet17-06), Emden – Emden, [22.06.2020 – 26.07.2020]
  16. Brix, S., Held, C., Kaiser, S., Jennings, R.M., Driskell, A. & Brandt, A. (2021) Evolution and phylogeny of the deep-sea isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 (Isopoda: Asellota). Organisms Diversity & Evolution, 1–27. https://doi.org/10.1007/s13127-021-00509-9 DOI: https://doi.org/10.1007/s13127-021-00509-9
  17. Brown, A. & Thatje, S. (2011) Respiratory response of the deep-sea amphipod Stephonyx biscayensis indicates bathymetric range limitation by temperature and hydrostatic pressure. PLoS One, 6 (12), e28562. https://doi.org/10.1371/journal.pone.0028562 DOI: https://doi.org/10.1371/journal.pone.0028562
  18. Devey, C.W. (ed.) & Shipboard scientific party (2015) RV SONNE Fahrtbericht / Cruise Report SO237 Vema-TRANSIT : bathymetry of the Vema-Fracture-Zone and Puerto Rico TRench and Abyssal AtlaNtic BiodiverSITy Study, Las Palmas (Spain) - Santo Domingo (Dom. Rep.) 14.12.14 - 26.01.15. GEOMAR Report, N. Ser. 023. GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Kiel, Germany, 130 pp.
  19. DOI 10.3289/GEOMAR_REP_NS_23_2015.
  20. Devey, C.W., Augustin, N., Brandt, A., Brenke, N., Köhler, J., Lins, L., Schmidt, C. & Yeo, I.A. (2018) Habitat characterization of the Vema fracture zone and Puerto Rico trench. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 7–20. https://doi.org/10.1016/j.dsr2.2018.02.003 DOI: https://doi.org/10.1016/j.dsr2.2018.02.003
  21. Danovaro, R., Snelgrove, P.V. & Tyler, P. (2014) Challenging the paradigms of deep-sea ecology. Trends in Ecology & Evolution, 29 (8), 465–475. https://doi.org/10.1016/j.tree.2014.06.002 DOI: https://doi.org/10.1016/j.tree.2014.06.002
  22. Downing, A.B., Wallace, G.T. & Yancey, P.H. (2018) Organic osmolytes of amphipods from littoral to hadal zones: Increases with depth in trimethylamine N-oxide, scyllo-inositol and other potential pressure counteractants. Deep Sea Research Part I: Oceanographic Research Papers, 138, 1–10. https://doi.org/10.1016/j.dsr.2018.05.008 DOI: https://doi.org/10.1016/j.dsr.2018.05.008
  23. Dreutter, S., Steffen, M., Arbizu, P.M. & Brandt, A. (2020) Will the “top five” deepest trenches lose one of their members?. Progress in Oceanography, 181. https://doi.org/10.1016/j.pocean.2019.102258 DOI: https://doi.org/10.1016/j.pocean.2019.102258
  24. Etter, R.J., Rex, M.A., Chase, M.R. & Quattro, J.M. (2005) Population differentiation decreases with depth in deep-sea bivalves. Evolution, 59, 1479–1491. https://doi.org/10.1111/j.0014-3820.2005.tb01797.x DOI: https://doi.org/10.1111/j.0014-3820.2005.tb01797.x
  25. France, S.C., & Kocher, T.D. (1996) Geographic and bathymetric patterns of mitochondrial 16S rRNA sequence divergence among deep-sea amphipods, Eurythenes gryllus. Marine Biology, 126 (4), 633–643. https://doi.org/10.1007/BF00351330 DOI: https://doi.org/10.1007/BF00351330
  26. Fujii, T., Kilgallen, N.M., Rowden, A.A. & Jamieson, A.J. (2013) Deep-sea amphipod community structure across abyssal to hadal depths in the Peru-Chile and Kermadec trenches. Marine Ecology Progress Series, 492, 125–138. https://doi.org/10.3354/meps10489 DOI: https://doi.org/10.3354/meps10489
  27. Fujisawa, T., & Barraclough, T.G. (2013) Delimiting species using single-locus data and the generalized mixed yule coalescent approach: a revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724. https://doi.org/10.1093/sysbio/syt033 DOI: https://doi.org/10.1093/sysbio/syt033
  28. Glazier, A. E., & Etter, R. J. (2014) Cryptic speciation along a bathymetric gradient. Biological Journal of the Linnean Society, 113 (4), 897–913. https://doi.org/10.1111/bij.12389 DOI: https://doi.org/10.1111/bij.12389
  29. Golovan, O.A., Blazewicz-Paszkowycz, M., Brandt, A., Budnikova, L.L., Elsner, N.O., Ivin, V.V., Lavrenteva, A.V., Malyutina, M.V., Petryashov, V.V., Tzareva L.A. (2013) Diversity and distribution of peracarid crustaceans (Malacostraca) from the continental slope and the deep-sea basin of the Sea of Japan. Deep-Sea Research II, 66–78. https://doi.org/10.1016/j.dsr2.2012.08.002 DOI: https://doi.org/10.1016/j.dsr2.2012.08.002
  30. Golovan, O., Błażewicz, M., Brandt, A., Jażdżewska, A., Jóźwiak, P., Lavrenteva, A.V., Malyutina, M.V., Petryashov, V., Riehl, T. (2018a) Diversity and distribution of peracarid crustaceans (Malacostraca) from the abyss adjacent to the Kuril-Kamchatka Trench. Marine Biodiversity, 49 (3), 1343–1360. https://doi.org/10.1007/s12526-018-0908-3 DOI: https://doi.org/10.1007/s12526-018-0908-3
  31. Golovan, O. A., Malyutina, M.V. & Brandt, A. (2018b) First record of the deep-sea isopod family Dendrotionidae (Isopoda: Asellota) from the Northwest Pacific with description of two new species of Dendromunna. Marine Biodiversity, 48 (1), 531–544. https://doi.org/10.1007/s12526-017-0725-0 DOI: https://doi.org/10.1007/s12526-017-0725-0
  32. Grilli, S.T., Dubosq, S., Pophet, N., Pérignon, Y., Kirby, J.T. & Shi, F. (2010) Numerical simulation and first-order hazard analysis of large co-seismic tsunamis generated in the Puerto Rico trench: near-field impact on the North shore of Puerto Rico and far-field impact on the US East Coast. Natural Hazards and Earth System Sciences, 10 (10), 2109. https://doi.org/10.5194/nhess-10-2109-2010 DOI: https://doi.org/10.5194/nhess-10-2109-2010
  33. Gurjanova, E. (1950) K faune ravonogich rakov (Isopoda) Tichogo okeana V. Isopod po sboram Kamchatskoi morskoi stasii Gosudarsevennogo gidrologischskogo in-ta. Akademiya Nauk SSSR. Zoologischskii Instituta, Isseldovaniia dal Nevostochnykh Morei SSSR, 2, 281–292.
  34. Hansen, H.J. (1916) Crustacea Malacostraca. III. V. The order Isopoda. The Danish Ingolf–Expedition. 3(5): iii+ 262 pp.
  35. Hessler, R.R. (1970). The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda Transect. Bulletin of the Scripps Institution of Oceanography, 15, 1–185.
  36. Hessler, R.R., Wilson, G.D. & Thistle, D. (1979) The deep-sea isopods: a biogeographic and phylogenetic overview. Sarsia, 64 (1–2), 67–75. https://doi.org/10.1080/00364827.1979.10411365 DOI: https://doi.org/10.1080/00364827.1979.10411365
  37. Jamieson, A.J. (2015) The hadal zone: Life in the deepest oceans. Cambridge University Press, 602 Cambridge, UK https://doi.org/10.1017/CBO9781139061384 DOI: https://doi.org/10.1017/CBO9781139061384
  38. Jamieson, A.J., Fujii, T., Mayor, D.J., Solan, M. & Priede, I.G. (2010) Hadal trenches: the ecology of the deepest places on Earth. Trends in Ecology & Evolution, 25 (3), 190–197. https://doi.org/10.1016/j.tree.2009.09.009 DOI: https://doi.org/10.1016/j.tree.2009.09.009
  39. Jamieson, A.J., Fujii, T. (2011) Trench connection. Biology Letters, 7, 641–643. https://doi.org/10.1098/rsbl.2011.0231 DOI: https://doi.org/10.1098/rsbl.2011.0231
  40. Jamieson, A.J., Kilgallen, N.M., Rowden, A.A., Fujii, T., Horton, T., Lörz, A.N., Kitazawa, K. & Priede, I.G. (2011) Bait-attending fauna of the Kermadec trench, SW Pacific Ocean: evidence for an ecotone across the abyssal-hadal transition zone. Deep Sea Research Part I: Oceanographic Research Papers, 58, 49–62. https://doi.org/10.1016/j.dsr.2010.11.003 DOI: https://doi.org/10.1016/j.dsr.2010.11.003
  41. Jennings, R.M., Etter, R.J., & Ficarra, L. (2013) Population differentiation and species formation in the deep sea: the potential role of environmental gradients and depth. PLoS One, 8 (10), e77594. https://doi.org/10.1371/journal.pone.0077594 DOI: https://doi.org/10.1371/journal.pone.0077594
  42. Jennings, R.M., Brix, S., Bober, S., Svavarsson, J. & Driskell, A. (2018) More diverse than expected: distributional patterns of Oecidiobranchus Hessler, 1970 (Isopoda, Asellota) on the Greenland-Iceland-Faeroe Ridge based on molecular markers. Marine Biodiversity, 48 (2), 845–857. https://doi.org/10.1007/s12526-018-0857-x DOI: https://doi.org/10.1007/s12526-018-0857-x
  43. Jennings, R.M., Golovan, O. & Brix, S. (2020) Integrative species delimitation of desmosomatid and nannoniscid isopods from the Kuril-Kamchatka trench, with description of a hadal species. Progress in Oceanography, 182, 102236. https://doi.org/10.1016/j.pocean.2019.102236 DOI: https://doi.org/10.1016/j.pocean.2019.102236
  44. Jumars, P.A., & Hessler, R.R. (1976) Hadal community structure: implications from the Aleutian Trench. Journal of Marine Research, 34(4), 547–560.
  45. Kaiser, S., & Brandt, A. (2007) Two new species of the genus Austroniscus Vanhoeffen, 1914 (Isopoda: Asellota: Nannoniscidae) from the Antarctic shelf. Zootaxa, 1394(1), 47–68. https://doi.org/10.11646/zootaxa.1394.1.3 DOI: https://doi.org/10.11646/zootaxa.1394.1.3
  46. Kaiser, S., Brix, S., Kihara, T.C., Janssen, A. & Jennings, R.M. (2018) Integrative species delimitation in the deep-sea genus Thaumastosoma Hessler, 1970 (Isopoda, Asellota, Nannoniscidae) reveals a new genus and species from the Atlantic and central Pacific abyss. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 151–179. https://doi.org/10.1016/j.dsr2.2017.05.006 DOI: https://doi.org/10.1016/j.dsr2.2017.05.006
  47. Kaiser, S., Kihara, T.C., Brix, S., Mohrbeck, I., Janssen, A. & Jennings, R. (2021) Species boundaries and phylogeographic patterns in new species of Nannoniscus G.O. Sars, 1870 (Janiroidea, Nannoniscidae) from the equatorial Pacific nodule province inferred from mtDNA and morphology. Zoological Journal of the Linnean Society, 193, 3, 1020–1071, https://doi.org/10.1093/zoolinnean/zlaa174 DOI: https://doi.org/10.1093/zoolinnean/zlaa174
  48. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33 (11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025 DOI: https://doi.org/10.1093/bioinformatics/btx025
  49. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010 DOI: https://doi.org/10.1093/molbev/mst010
  50. Kekkonen, M. & Hebert, P.D. (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources, 14 (4), 706–715. https://doi.org/10.1111/1755-0998.12233 DOI: https://doi.org/10.1111/1755-0998.12233
  51. Kihara, T.C. & Rocha, C. (2009) Técnicas para o estudo taxonômico de copépodes harpacticóides da meiofauna marinha. Porto Alegre: Asterisco.
  52. Kniesz, K., Brandt, A. & Riehl, T. (2018) Peritrich epibionts on the hadal isopod species Macrostylis marionae n. sp. from the Puerto Rico Trench used as indicator for sex-specific behaviour. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 105–129. https://doi.org/10.1016/j.dsr2.2017.10.007 DOI: https://doi.org/10.1016/j.dsr2.2017.10.007
  53. Kussakin, O.G. (1973) Peculiarities of the geographical and vertical distribution of marine isopods and the problem of deep-sea fauna origin. Marine Biology, 23 (1), 19–34. https://doi.org/10.1007/BF00394108 DOI: https://doi.org/10.1007/BF00394108
  54. Lacey, N.C., Mayor, D.J., Linley, T.D. & Jamieson, A.J. (2018) Population structure of the hadal amphipod Bathycallisoma (Scopelocheirus) schellenbergi in the Kermadec Trench and New Hebrides Trench, SW Pacific. Deep Sea Research Part II: Topical Studies in Oceanography, 155, 50–60. https://doi.org/10.1016/j.dsr2.2017.05.001 DOI: https://doi.org/10.1016/j.dsr2.2017.05.001
  55. Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J. & Higgins, D.G. (2007) Clustal W and Clustal X version 2.0. Bioinformatics, 23 (21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404 DOI: https://doi.org/10.1093/bioinformatics/btm404
  56. Leigh, J.W., & Bryant, D. (2015) Popart: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. https://doi.org/10.1111/2041-210X.12410 DOI: https://doi.org/10.1111/2041-210X.12410
  57. Liu, R., Wang, L., Wei, Y. & Fang, J. (2018) The hadal biosphere: Recent insights and new directions. Deep Sea Research Part II: Topical Studies in Oceanography, 155, 11–18. https://doi.org/10.1016/j.dsr2.2017.04.015 DOI: https://doi.org/10.1016/j.dsr2.2017.04.015
  58. Lörz, A.N., Jażdżewska, A.M. & Brandt, A. (2018) A new predator connecting the abyssal with the hadal in the Kuril-Kamchatka Trench, NW Pacific. PeerJ, 6, e4887. https://doi.org/10.7717/peerj.4887 DOI: https://doi.org/10.7717/peerj.4887
  59. McClain, C.R. & Hardy, S.M. (2010) The dynamics of biogeographic ranges in the deep sea. Proceedings of the Royal Society B: Biological Sciences, 277(1700), 3533–3546. https://doi.org/10.1098/rspb.2010.1057 DOI: https://doi.org/10.1098/rspb.2010.1057
  60. McCallum, A. & Riehl, T. (2020) Intertidal to Abyss: Crustaceans and Depth. In Evolution and Biogeography— The Natural History of the Crustacea (Vol. 8, pp. 429–449). Oxford University Press. [https://global.oup.com/academic/product/the-natural-history-of-the-crustacea9780190637842?lang=en&cc=de#] DOI: https://doi.org/10.1093/oso/9780190637842.003.0016
  61. Menzies, R.J. & George, R.Y. (1972) Isopod Crustacea of the Peru-Chile Trench. Anton Brunn Rep. 9, 1–124.
  62. Michels, J. & Büntzow, M. (2010) Assessment of Congo red as a fluorescence marker for the exoskeleton of small crustaceans and the cuticle of polychaetes. Journal of Microscopy, 238 (2), 95–101. https://doi.org/10.1111/j.1365-2818.2009.03360.x DOI: https://doi.org/10.1111/j.1365-2818.2009.03360.x
  63. Nunoura, T., Takaki, Y., Hirai, M., Shimamur, S., Makabe, A., Koide, O., Kikuchie, T., Miyazaki, J., Koba, K., Yoshida, N., Sunamura, M. & Takai, K. (2015) Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth. Proceedings of the National Academy of Sciences of the United States of America, 112 (11), E1230–E1236. https://doi.org/10.1073/pnas.1421816112 DOI: https://doi.org/10.1073/pnas.1421816112
  64. Ólafsdóttir S.H. & Svavarsson, J. (2002) Ciliate (Protozoa) epibionts of deep-water asellote isopods (Crustacea): pattern and diversity. Journal of Crustacean Biology, 22 (3), 607–618. https://doi.org/10.1163/20021975-99990273 DOI: https://doi.org/10.1163/20021975-99990273
  65. Pentinsaari, M., Vos, R. & Mutanen, M. (2017) Algorithmic single-locus species delimitation: effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Molecular Ecology Resources, 17 (3), 393–404. https://doi.org/10.1111/1755-0998.12557 DOI: https://doi.org/10.1111/1755-0998.12557
  66. Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Vogler, A.P. (2006) Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55 (4), 595–609. https://doi.org/10.1080/10635150600852011 DOI: https://doi.org/10.1080/10635150600852011
  67. Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G.J.M.E. (2012) ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21 (8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x DOI: https://doi.org/10.1111/j.1365-294X.2011.05239.x
  68. QGIS Development Team (2020) QGIS Geographic Information System (Version 3.4.7-Madeira): Open Source Geospatial Foundation Project. Available from: http://qgis.osgeo.org. (accessed 1 March 2023)
  69. Rambaut, A., Suchard, M.A., Xie, D. & Drummond, A.J. (2014) Tracer v1. 6. available from http. beast. bio. ed. ac. uk/Tracer.
  70. Raupach, M.J. & Wägele, J.W. (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)-a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarctic Science, 18 (2), 191–198. https://doi.org/10.1017/S0954102006000228 DOI: https://doi.org/10.1017/S0954102006000228
  71. Raupach, M.J., Mayer, C., Malyutina, M. & Wägele, J.W. (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proceedings of the Royal Society B: Biological Sciences, 276 (1658), 799–808. https://doi.org/10.1098/rspb.2008.1063 DOI: https://doi.org/10.1098/rspb.2008.1063
  72. Rex, M.A., & Etter, R.J. (2010) Deep-sea biodiversity: pattern and scale. Harvard University Press.
  73. Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12 (1), 1–11. https://doi.org/10.1186/1471-2148-12-196 DOI: https://doi.org/10.1186/1471-2148-12-196
  74. Riehl, T. & Brandt, A. (2010) Descriptions of two new species in the genus Macrostylis Sars, 1864 (Isopoda, Asellota, Macrostylidae) from the Weddell Sea (Southern Ocean), with a synonymisation of the genus Desmostylis Brandt, 1992 with Macrostylis. ZooKeys, (57), 9–49. https://doi.org/10.3897/zookeys.57.310 DOI: https://doi.org/10.3897/zookeys.57.310
  75. Riehl, T. & Kaiser, S. (2012) Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization. PLoS One, 7 (11), e49354. https://doi.org/10.1371/journal.pone.0049354 DOI: https://doi.org/10.1371/journal.pone.0049354
  76. Riehl, T., Wilson, G.D.F. & Hessler, R.R. (2012) New Macrostylidae Hansen, 1916 (Crustacea: Isopoda) from the Gay Head-Bermuda transect with special consideration of sexual dimorphism. Zootaxa, 3277 (1), 1–26. https://doi.org/10.11646/zootaxa.3277.1.1 DOI: https://doi.org/10.11646/zootaxa.3277.1.1
  77. Riehl, T., Brenke, N., Brix, S., Driskell, A., Kaiser, S., & Brandt, A. (2014) Field and laboratory methods for DNA studies on deep-sea isopod crustaceans. Polish Polar Research, 203–224. https://doi.org/10.2478/popore-2014-0018 DOI: https://doi.org/10.2478/popore-2014-0018
  78. Riehl, T., Kaiser, S. & Brandt, A. (2018a) Vema-TRANSIT–An interdisciplinary study on the bathymetry of the Vema-Fracture Zone and Puerto Rico Trench as well as abyssal Atlantic biodiversity. Deep Sea Research Part II: Topical Studies in Oceanography, 148, 1–6. https://doi.org/10.1016/j.dsr2.2018.01.007 DOI: https://doi.org/10.1016/j.dsr2.2018.01.007
  79. Riehl, T., Lins, L. & Brandt, A. (2018b) The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep Sea Research Part II: Topical Studies in Oceanography, 148, 74–90. https://doi.org/10.1016/j.dsr2.2017.10.005 DOI: https://doi.org/10.1016/j.dsr2.2017.10.005
  80. Ritchie, H., Jamieson, A.J. & Piertney, S.B. (2017) Population genetic structure of two congeneric deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 119, 50–57. https://doi.org/10.1016/j.dsr.2016.11.006 DOI: https://doi.org/10.1016/j.dsr.2016.11.006
  81. Sands, C. J., O’Hara, T.D. & Martín-Ledo, R. (2021) Pragmatic assignment of species groups based on primary species hypotheses: the case of a dominant component of the Southern Ocean benthic fauna. Frontiers in Marine Science, 1371. https://doi.org/10.3389/fmars.2021.723328 DOI: https://doi.org/10.3389/fmars.2021.723328
  82. Schiecke, U. & Modigh-Tota, M. (1976) Erstfund eines Vertreters der Nannoniscidae (Isopoda: Asellota) im Mittelmeer: Austroniscus coronatus n. sp. aus dem Golf von Neapel. Pubblicazioni della Stazione Zoologico di Napoli 40 (1), 105–113.
  83. Schnurr, S., Osborn, K.J., Malyutina, M., Jennings, R., Brix, S., Driskell, A., Svavarsson, J. & Martinez Arbizu, P. (2018) Hidden diversity in two species complexes of munnopsid isopods (Crustacea) at the transition between the northernmost North Atlantic and the Nordic Seas. Marine Biodiversity, 48 (2), 813–843. https://doi.org/10.1007/s12526-018-0877-6 DOI: https://doi.org/10.1007/s12526-018-0877-6
  84. Siebenaller, J.F. & Hessler, R.R. (1977) The Nannoniscidae (Isopoda, Asellota): Hebefustis n. gen. and Nannoniscoides Hansen. Transactions of the San Diego Society of Natural History 19, 17–44.
  85. Siebenaller J.F. & Hessler R.R. (1981) The genera of the Nannoniscidae (Isopoda, Asellota). Trans. San Diego Soc. Nat. Hist., 19, 227–250.
  86. Stewart, H.A. & Jamieson, A.J. (2018) Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Progress in Oceanography, 161, 47–65. https://doi.org/10.1016/j.pocean.2018.01.007 DOI: https://doi.org/10.1016/j.pocean.2018.01.007
  87. Stewart, H.A. & Jamieson, A.J. (2019) The five deeps: The location and depth of the deepest place in each of the world’s oceans. Earth-Science Reviews, 197, 102896. https://doi.org/10.1016/j.earscirev.2019.102896 DOI: https://doi.org/10.1016/j.earscirev.2019.102896
  88. Svavarsson, J. (1982) Nannoniscus profundus sp. n. and Austroniscus norbi sp. n. (Isopoda, Asellota, Nannoniscidae) from the deep Norwegian Sea. Sarsia 67, 179–186. https://doi.org/10.1080/00364827.1982.10420545 DOI: https://doi.org/10.1080/00364827.1982.10420545
  89. Svavarsson, J., Stromberg, J.O. & Brattegard, T. (1993) The deep-sea asellote (Isopoda, Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. Journal of Biogeography, 537–555. https://doi.org/10.2307/2845725 DOI: https://doi.org/10.2307/2845725
  90. Talavera, G. & Castresana, J. (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56 (4), 564–577. https://doi.org/10.1080/10635150701472164 DOI: https://doi.org/10.1080/10635150701472164
  91. Taylor, M.L. & Roterman, C.N. (2017) Invertebrate population genetics across Earth’s largest habitat: The deep‐sea floor. Molecular Ecology, 26 (19), 4872–4896. https://doi.org/10.1111/mec.14237 DOI: https://doi.org/10.1111/mec.14237
  92. van Haren, H. & Gostiaux, L. (2016) Convective mixing by internal waves in the Puerto Rico Trench. Journal of Marine Research, 74 (3), 161–173. https://doi.org/10.1357/002224016819594809 DOI: https://doi.org/10.1357/002224016819594809
  93. van Haren, H. (2017) AABW-transport variation and its effect on internal wave motions between top and bottom of the Puerto Rico Trench. Journal of Marine Research, 75 (4), 507–529. https://doi.org/10.1357/002224017821836716 DOI: https://doi.org/10.1357/002224017821836716
  94. Vanhöffen, E. (1914) Die Isopoden der deutschen Südpolar-Expedition 1901-1903. Deutsche Südpolar-Expedition, Zoologie,15, 447–598. https://doi.org/10.5962/bhl.title.10649 DOI: https://doi.org/10.5962/bhl.title.10649
  95. Vinogradova, N.G. (1997) Zoogeography of the abyssal and hadal zones. In: Advances in Marine Biology (Vol. 32, pp. 325–387). Academic Press. https://doi.org/10.1016/S0065-2881(08)60019-X DOI: https://doi.org/10.1016/S0065-2881(08)60019-X
  96. Weston, J.N., Espinosa-Leal, L., Wainwright, J.A., Stewart, E.C., González, C.E., Linley, T.D., Reid, W.D.K., Hidalgo P., Oliva, M.E., Ulloa, O., Wenzhöfer, F., Glud, R., Escribano, R. & Jamieson, A.J. (2021) Eurythenes atacamensis sp. nov. (Crustacea: Amphipoda) exhibits ontogenetic vertical stratification across abyssal and hadal depths in the Atacama Trench, eastern South Pacific Ocean. Marine Biodiversity, 51 (3), 1–20. https://doi.org/10.1007/s12526-021-01182-z DOI: https://doi.org/10.1007/s12526-021-01182-z
  97. Wilson, G. D. (1998) Historical influences on deep-sea isopod diversity in the Atlantic Ocean. Deep Sea Research Part II: Topical Studies in Oceanography, 45 (1-3), 279–301. https://doi.org/10.1016/S0967-0645(97)00046-5 DOI: https://doi.org/10.1016/S0967-0645(97)00046-5
  98. Wilson, G.D. (2008) A review of taxonomic concepts in the Nannoniscidae (Isopoda, Asellota), with a key to the genera and a description of Nannoniscus oblongus Sars. Zootaxa, 1680 (1), 1–24. https://doi.org/10.11646/zootaxa.1680.1.1 DOI: https://doi.org/10.11646/zootaxa.1680.1.1
  99. Wolff, T. (1956) Isopoda from depths exceeding 6000 meters. Galathea 2 Report 2, 85–158.
  100. Wolff, T. (1959) The hadal community, an introduction. Deep Sea Research 6, 95–124. https://doi.org/10.1016/0146-6313(59)90063-2 DOI: https://doi.org/10.1016/0146-6313(59)90063-2
  101. Wolff, T. (1962) The Systematics and Biology of Bathyal and Abyssal Isopoda Asellota. Danish Science Press, Copenhagen, pp. 7–320.
  102. Wolff, T. (1970) The concept of the hadal or ultra-abyssal fauna. In: Deep Sea Research and Oceanographic Abstracts, Elsevier, Vol. 17, No. 6, pp. 983–1003 https://doi.org/10.1016/0011-7471(70)90049-5 DOI: https://doi.org/10.1016/0011-7471(70)90049-5
  103. Wolff, T. (1979) Macrofaunal utilization of plant remains in the deep sea. Sarsia, 64 (1-2), 117–143. https://doi.org/10.1080/00364827.1979.10411373 DOI: https://doi.org/10.1080/00364827.1979.10411373
  104. WoRMS Editorial Board (2021) World Register of Marine Species. Available from: http://www.marinespecies.org at VLIZ. (Accessed 20 October 2022)