Skip to main content Skip to main navigation menu Skip to site footer
Type: Monograph
Published: 2023-09-05
Page range: 1-119
Abstract views: 284
PDF downloaded: 28

The systematics of the pseudoscorpion genus Indohya (Pseudoscorpiones: Hyidae) in Australia

Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Adjunct; School of Biological Sciences; University of Western Australia; Crawley; Western Australia 6009; Australia
Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia
Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Present address: Department of Water and Environmental Regulation; Locked Bag 10; Joondalup DC; Western Australia 6919; Australia
Adjunct; School of Biological Sciences; University of Western Australia; Crawley; Western Australia 6009; Australia; Helix Molecular Solutions Pty Ltd; PO Box 155; Leederville; Western Australia 6153; Australia
Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Adjunct; School of Biological Sciences; University of Western Australia; Crawley; Western Australia 6009; Australia; Present address: Biologic Environmental Survey; East Perth; Western Australia 6004; Australia
Collections & Research; Western Australian Museum; 49 Kew Street; Welshpool; Western Australia 6106; Australia; Present address: Biologic Environmental Survey; East Perth; Western Australia 6004; Australia; Subterranean Research and Groundwater Ecology (SuRGE) Group; Trace and Environmental DNA (TrEnD) Laboratory; School of Molecular and Life Sciences; Curtin University; Perth; Western Australia 6102; Australia
Pseudoscorpiones taxonomy morphology new species COI 18S 28S

Abstract

The pseudoscorpion genus Indohya Beier, 1974 is known to occur in three Gondwanan fragments around the Indian Ocean—southern India, Madagascar and north-western Australia—suggesting that the genus had evolved prior to the breakup of Gondwana and was present on each landmass as they rifted apart during the Mesozoic. The Australian fauna is the most diverse, with nine species previously described from Cape Range and the Kimberley region of north-western Australia. The present study documents the genus Indohya in Australia using a combination of morphology and DNA sequence data. We found a total of 36 species, including 27 new species. The majority of the Pilbara fauna consist of blind troglobites collected from subterranean ecosystems, with an additional three eyed species from epigean habitats. The new species consist of one from Cape Range (I. anastomosa Harvey & Burger, n. sp.), 21 from the Pilbara (I. adlardi Harvey & Burger, n. sp., I. alexanderi Harvey & Burger, n. sp., I. aphana Harvey & Burger, n. sp., I. aquila Harvey & Burger, n. sp., I. arcana Harvey & Burger, n. sp., I. arnoldstrongi Harvey & Burger, n. sp., I. boltoni Harvey & Burger, n. sp., I. cardo Harvey & Burger, n. sp., I. catherineae Harvey & Burger, n. sp., I. cockingi Harvey & Burger, n. sp., I. cribbi Harvey & Burger, n. sp., I. draconis Harvey & Burger, n. sp., I. furtiva Harvey & Burger, n. sp., I. incomperta Harvey & Burger, n. sp., I. jessicae Harvey & Burger, n. sp., I. lynbeazlyeae Harvey & Burger, n. sp., I. morganstrongi Harvey & Burger, n. sp., I. rixi Harvey & Burger, n. sp., I. sagmata Harvey & Burger, n. sp., I. scanloni Harvey & Burger, n. sp. and I. silenda Harvey & Burger, n. sp.) and five from the Kimberley (I. currani Harvey & Burger, n. sp., I. finitima Harvey & Burger, n. sp., I. julianneae Harvey & Burger, n. sp., I. karenae Harvey & Burger, n. sp. and I. sachsei Harvey & Burger, n. sp.). The study is augmented with sequence data from 29 species of Indohya, including all of the 24 species recorded from the Pilbara and Cape Range, and five of the 12 known Kimberley species. Seven clades recovered during the molecular analysis are only represented by nymphs, but we used COI sequence data to diagnose these species in the absence of adult morphological data.

 

References

  1. Abrams, K.M. & Harvey, M.S. (2015) A new troglobitic schizomid (Hubbardiidae: Paradraculoides) from the Pilbara region, Western Australia. Records of the Western Australian Museum, 30, 132–136. https://doi.org/10.18195/issn.0312-3162.30(2).2015.132-136
  2. Abrams, K.M., Huey, J.A., Hillyer, M.J., Didham, R. K. & Harvey, M.S. (2020) A systematic revision of Draculoides (Schizomida: Hubbardiidae) of the Pilbara, Western Australia, Part I: the Western Pilbara. Zootaxa, 4864 (1), 1–75. https://doi.org/10.11646/zootaxa.4864.1.1
  3. Abrams, K.M., Huey, J.A., Hillyer, M.J., Humphreys, W.F., Didham, R.K. & Harvey, M.S. (2019) Too hot to handle: Tertiary aridification drives multiple independent incursions of Schizomida (Hubbardiidae) into hypogean environments. Molecular Phylogenetics and Evolution, 139, 1–12. https://doi.org/10.1016/j.ympev.2019.106532
  4. Alexander, J.B., Burger, M.A.A. & Harvey, M.S. (2014) A new species of troglobitic Anatemnus (Pseudoscorpiones: Atemnidae) from the Pilbara bioregion of Australia. Records of the Western Australian Museum, 29, 141–148. https://doi.org/10.18195/issn.0312-3162.29(2).2014.141-148
  5. Arabi, J., Judson, M.L., Deharveng, L., Lourenço, W.R., Cruaud, C. & Hassanin, A. (2012) Nucleotide composition of CO1 sequences in Chelicerata (Arthropoda): detecting new mitogenomic rearrangements. Journal of Molecular Evolution, 74, 81–95. https://doi.org/10.1007/s00239-012-9490-7
  6. Baehr, B.C., Harvey, M.S., Burger, M. & Thoma, M. (2012) The new Australasian goblin spider genus Prethopalpus (Araneae, Oonopidae). Bulletin of the American Museum of Natural History, 763, 1–113. https://doi.org/10.1206/763.1
  7. Beier, M. (1973) Pseudoscorpionidea von Ceylon. Entomologica Scandinavica Supplement, 4, 39–55.
  8. Beier, M. (1974) Pseudoscorpione aus Südindien des Naturhistorischen Museums in Genf. Revue Suisse de Zoologie, 81, 999–1017. https://doi.org/10.5962/bhl.part.76057
  9. Benavides, L.R., Cosgrove, J.G., Harvey, M.S. & Giribet, G. (2019) Phylogenomic interrogation resolves the backbone of the Pseudoscorpiones Tree of Life. Molecular Phylogenetics and Evolution, 139, 1–14. https://doi.org/10.1016/j.ympev.2019.05.023
  10. Besse, J. & Courtillot, V. (1988) Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic. Journal of Geophysical Research, 93, 11791–11808. https://doi.org/10.1029/JB093iB10p11791
  11. Brown, R. W. (1956) Composition of scientific words. Revised Edition. Smithsonian Institution Press, Washington, D.C., 882 pp.
  12. Burger, M., Harvey, M.S. & Stevens, N. (2010) A new species of blind subterranean Tetrablemma (Araneae: Tetrablemmidae) from Australia. Journal of Arachnology, 38, 146–149. https://doi.org/10.1636/A09-73.1
  13. Chamberlin, J.C. (1930) A synoptic classification of the false scorpions or chela-spinners, with a report on a cosmopolitan collection of the same. Part II. The Diplosphyronida (Arachnida-Chelonethida). Annals and Magazine of Natural History, Series 10, 5, 1–48 + 585–620. https://doi.org/10.1080/00222933008673173
  14. Chamberlin, J.C. (1931) The arachnid order Chelonethida. Stanford University Publications, Biological Sciences, 7, 1–284.
  15. Christophoryová, J., Krajčovičová, K., Šťáhlavský, F., Španiel, S. & Opatova, V. (2023) Integrative taxonomy approach reveals cryptic diversity within the phoretic pseudoscorpion genus Lamprochernes (Pseudoscorpiones: Chernetidae). Insects, 14, 122. https://doi.org/10.3390/insects14020122
  16. Cook, L.G., Edwards, R.D., Crisp, M.D. & Hardy, N.B. (2010) Need morphology always be required for new species descriptions? Invertebrate Systematics, 24, 322–326. https://doi.org/10.1071/IS10011
  17. Dallwitz, M.J. (1980) A general system for coding taxonomic descriptions. Taxon, 29, 41–46. https://doi.org/10.2307/1219595
  18. Dallwitz, M.J., Paine, T.A. & Zurcher, E.J. (2010) User’s guide to the DELTA editor. 11 January 2010. CSIRO, Canberra. [unknown pagination]
  19. De Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635150701701083
  20. Edward, K.L. & Harvey, M.S. (2008) Short-range endemism in hypogean environments: the pseudoscorpion genera Tyrannochthonius and Lagynochthonius (Pseudoscorpiones: Chthoniidae) in the semiarid zone of Western Australia. Invertebrate Systematics, 22, 259–293. https://doi.org/10.1071/IS07025
  21. Framenau, V.W., Hamilton, Z. R., Finston, T., Humphreys, G., Abrams, K.M., Huey, J.A. & Harvey, M.S. (2018) Molecular and morphological characterization of new species of hypogean Paradraculoides (Schizomida: Hubbardiidae) from the arid Pilbara bioregion of Western Australia. Journal of Arachnology, 46, 507–537. https://doi.org/10.1636/JoA-S-17-101.1
  22. Halse, S.A. & Pearson, G.B. (2014) Troglofauna in the vadose zone: comparison of scraping and trapping results and sampling adequacy. Subterranean Biology, 13, 17–34. https://doi.org/10.3897/subtbiol.13.6991
  23. Harms, D., Curran, M.K., Klesser, R., Finston, T.L. & Halse, S.A. (2018) Speciation patterns in complex subterranean environments: a case study using short-tailed whipscorpions (Schizomida: Hubbardiidae). Biological Journal of the Linnean Society, 125, 355–367. https://doi.org/10.1093/biolinnean/bly102
  24. Harrison, S.E., Guzik, M.T., Harvey, M.S. & Austin, A.D. (2014) Molecular phylogenetic analysis of Western Australian troglobitic chthoniid pseudoscorpions (Pseudoscorpiones : Chthoniidae) points to multiple independent subterranean clades. Invertebrate Systematics, 28, 386–400. https://doi.org/10.1071/IS14005
  25. Harvey, M.S. (1991a) The cavernicolous pseudoscorpions (Chelicerata: Pseudoscorpionida) of Cape Range, Western Australia. Records of the Western Australian Museum, 15, 487–502.
  26. Harvey, M.S. (1991b) Notes on the genera Parahya Beier and Stenohya Beier (Pseudoscorpionida: Neobisiidae). Bulletin of the British Arachnological Society, 8, 288–292.
  27. Harvey, M.S. (1992) The phylogeny and classification of the Pseudoscorpionida (Chelicerata: Arachnida). Invertebrate Taxonomy, 6, 1373–1435. https://doi.org/10.1071/IT9921373
  28. Harvey, M.S. (1993) The systematics of the Hyidae (Pseudoscorpionida: Neobisioidea). Invertebrate Taxonomy, 7, 1–32. https://doi.org/10.1071/IT9930001
  29. Harvey, M.S. (1996) Small arachnids and their value in Gondwanan biogeographic studies. In: Hopper, S.D., Chappill, J.A., Harvey, M.S. & George, A.S. (Eds.), Gondwanan heritage: past, present and future of the Western Australian biota. Surrey Beatty & Sons, Chipping Norton, pp. 155–162.
  30. Harvey, M.S. (2002) Short-range endemism among the Australian fauna: some examples from non-marine environments. Invertebrate Systematics, 16, 555–570. https://doi.org/10.1071/IS02009
  31. Harvey, M.S., Abrams, K.M., Beavis, A.S., Hillyer, M.J. & Huey, J.A. (2016a) Pseudoscorpions of the family Feaellidae (Pseudoscorpiones: Feaelloidea) from the Pilbara region of Western Australia show extreme short-range endemism. Invertebrate Systematics, 30, 491–508. https://doi.org/10.1071/IS16013
  32. Harvey, M.S., Berry, O., Edward, K.L. & Humphreys, G. (2008) Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semi-arid Australia. Invertebrate Systematics, 22, 167–194. https://doi.org/10.1071/IS07026
  33. Harvey, M.S. & Edward, K.L. (2007) A review of the pseudoscorpion genus Ideoblothrus (Pseudoscorpiones, Syarinidae) from western and northern Australia. Journal of Natural History, 41, 445–472. https://doi.org/10.1080/00222930701219123
  34. Harvey, M.S., Gray, M.R., Hunt, G.S. & Lee, D.C. (1993) The cavernicolous Arachnida and Myriapoda of Cape Range, Western Australia. Records of the Western Australian Museum Supplement, 45, 129–144.
  35. Harvey, M.S., Hillyer, M.J., Carvajal, J.I. & Huey, J.A. (2020) Supralittoral pseudoscorpions of the genus Garypus (Pseudoscorpiones: Garypidae) from the Indo-West Pacific region, with a review of the subfamily classification of Garypidae. Invertebrate Systematics, 34, 34–87. https://doi.org/10.1071/IS19029
  36. Harvey, M.S., Huey, J.A., Hillyer, M.J., McIntyre, E. & Giribet, G. (2016b) The first troglobitic species of Gymnobisiidae (Pseudoscorpiones, Neobisioidea), from Table Mountain (Western Cape Province, South Africa) and its phylogenetic position. Invertebrate Systematics, 30, 75–85. https://doi.org/10.1071/IS15044
  37. Harvey, M.S. & Leng, M.C. (2008a) The first troglomorphic pseudoscorpion of the family Olpiidae (Pseudoscorpiones), with remarks on the composition of the family. Records of the Western Australian Museum, 24, 387–394. https://doi.org/10.18195/issn.0312-3162.24(4).2008.387-394
  38. Harvey, M.S. & Leng, M.C. (2008b) Further observations on Ideoblothrus (Pseudoscorpiones: Syarinidae) from subterranean environments in Australia. Records of the Western Australian Museum, 24, 379–386. https://doi.org/10.18195/issn.0312-3162.24(4).2008.381-386
  39. Harvey, M.S., Lopes, P.C., Goldsmith, G.R., Halajian, A., Hillyer, M.J. & Huey, J.A. (2015) A novel symbiotic relationship between sociable weaver birds (Philetairus socius) and a new cheliferid pseudoscorpion (Pseudoscorpiones: Cheliferidae) in southern Africa. Invertebrate Systematics, 29, 444–456. https://doi.org/10.1071/IS15027
  40. Harvey, M.S., Ratnaweera, P.B., Udagama, P.V. & Wijesinghe, M.R. (2012) A new species of the pseudoscorpion genus Megachernes (Pseudoscorpiones: Chernetidae) associated with a threatened Sri Lankan rainforest rodent, with a review of host associations of Megachernes. Journal of Natural History, 46, 2519–2535. https://doi.org/10.1080/00222933.2012.707251
  41. Harvey, M.S., Rix, M.G., Framenau, V.W., Hamilton, Z.R., Johnson, M.S., Teale, R.J., Humphreys, G. & Humphreys, W.F. (2011) Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics, 25, 1–10. https://doi.org/10.1071/IS11011
  42. Harvey, M.S., Shear, W.A. & Hoch, H. (2000) Onychophora, Arachnida, myriapods and Insecta. In: Wilkens, H., Culver, D.C. & Humphreys, W.F. (Eds.), Subterranean ecosystems. Elsevier, Amsterdam, pp. 79–94.
  43. Harvey, M.S. & Volschenk, E.S. (2007) The systematics of the Gondwanan pseudoscorpion family Hyidae (Pseudoscorpiones: Neobisioidea): new data and a revised phylogenetic hypothesis. Invertebrate Systematics, 21, 365–406. https://doi.org/10.1071/IS05030
  44. Hlebec, D., Harms, D., Kučinić, M. & Harvey, M.S. (2023) Integrative taxonomy of the pseudoscorpion family Chernetidae (Pseudoscorpiones: Cheliferoidea): evidence for new range-restricted species in the Dinaric Karst. Zoological Journal of the Linnean Society. [submitted]
  45. Hlebec, D., Podnar, M., Kučinić, M. & Harms, D. (2023) Molecular analyses of pseudoscorpions in a subterranean biodiversity hotspot reveal cryptic diversity and microendemism. Scientific Reports, 13, 1–14. https://doi.org/10.1038/s41598-022-26298-5
  46. International Union for Conservation of Nature (2012) IUCN red list categories and criteria. Version 3.1. 2nd Edition. International Union for Conservation of Nature, Gland, iv + 32 pp.
  47. Judson, M.L.I. (2007) A new and endangered species of the pseudoscorpion genus Lagynochthonius from a cave in Vietnam, with notes on chelal morphology and the composition of the Tyrannochthoniini (Arachnida, Chelonethi, Chthoniidae). Zootaxa, 1627 (1), 53–68. https://doi.org/10.11646/zootaxa.1627.1.4
  48. Katoh, K., Misawa, K., Kuma, K.-I. & Mityata, T. (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066. https://doi.org/10.1093/nar/gkf436
  49. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software Version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  50. Li, Z.X. & Powell, C.M. (2001) An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth-Science Reviews, 53, 237–277. https://doi.org/10.1016/S0012-8252(00)00021-0
  51. Metcalfe, I. (2013) Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1‒33. https://doi.org/10.1016/j.jseaes.2012.12.020
  52. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
  53. Muchmore, W.B. (1998) Review of the family Bochicidae, with new species and records (Arachnida: Pseudoscorpionida). Insecta Mundi, 12, 117–132.
  54. Murienne, J., Harvey, M.S. & Giribet, G. (2008) First molecular phylogeny of the major clades of Pseudoscorpiones (Arthropoda: Chelicerata). Molecular Phylogenetics and Evolution, 49, 170–184. https://doi.org/10.1016/j.ympev.2008.06.002
  55. Muster, C., Spelda, J., Rulik, B., Thormann, J., von der Mark, L. & Astrin, J.J. (2021) The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecology and Evolution, 11, 13815–13829. https://doi.org/10.1002/ece3.8088
  56. Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Research, 44, W232–W235. https://doi.org/10.1093/nar/gkw256
  57. Tullgren, A. (1905) Einige Chelonethiden aus Java. Mitteilungen aus dem Naturhistorischen Museum in Hamburg, 22, 37–47.
  58. Zaragoza, J.A. (2017) Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). Zootaxa, 4246 (1), 1–221. https://doi.org/10.11646/zootaxa.4246.1.1