Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2023-09-19
Page range: 201-241
Abstract views: 470
PDF downloaded: 32

Revision of the genus Fascaplysinopsis, the type species Fascaplysinopsis reticulata (Hentschel, 1912) (Porifera, Dictyoceratida, Thorectidae) and descriptions of two new genera and seven new species

Queensland Museum; PO Box 3300; South Brisbane 4101; Brisbane; Queensland; Australia; Griffith Institute for Drug Discovery; Griffith University; Brisbane 4111; Queensland; Australia; School of Biological Sciences; University of Queensland; St Lucia; Queensland; 4072 Australia
Dept. of Earth and Environmental Sciences Ludwig-Maximilians-Universität München; Richard-Wagner-Straße 10; 80333 Munich; Germany; GeoBio-Center; Ludwig-Maximilians-Universität München; Richard-Wagner-Straße 10; 80333 Munich; Germany
IRD; University of Brest; CNRS; Ifremer; LEMAR; F-29280 Plouzané; France; IRD; Univ de la Polynésie française; Ifremer; ILM; EIO; F-98713 Papeete; French Polynesia
IRD; Univ de la Polynésie française; Ifremer; ILM; EIO; F-98713 Papeete; French Polynesia; Institut Louis Malardé—Papeete ; BP 30—98713 Papeete; Tahiti; French Polynesia
Dept. of Earth and Environmental Sciences Ludwig-Maximilians-Universität München; Richard-Wagner-Straße 10; 80333 Munich; Germany; GeoBio-Center; Ludwig-Maximilians-Universität München; Richard-Wagner-Straße 10; 80333 Munich; Germany; SNSB—Bayerische Staatssammlung für Paläontologie und Geologie; Richard-Wagner-Str. 10; 80333 München; Germany
Queensland Museum; PO Box 3300; South Brisbane 4101; Brisbane; Queensland; Australia
Porifera thorectinae taxonomy systematics new species new genera Indo-west Pacific Australia fascaplysin horny sponges

Abstract

The present study examines the taxonomy of sponge specimens with unique chemistry collectively known as Fascaplysinopsis reticulata (Hentschel, 1912). Examination of Hentschel’s original species upon which the genus Fascaplysinopsis Bergquist, 1980 was based in conjunction with a comparison with recent Indo-west Pacific collections, using morphological and molecular analyses (ITS and 28S rDNA), revealed extensive variation. Fascaplysinopsis reticulata was found to be a species complex comprising the genus Fascaplysinopsis, as well as two new genera: Skolosachlys gen. nov. and Rubrafasciculus gen. nov. The new species of Fascaplysinopsis described are F. palauensis sp. nov., F. klobos sp. nov. and F. ronquinni sp. nov. The new species of Skolosachlys gen. nov. described herein are: S. enlutea sp. nov. and S. nidus sp. nov. The new species described of Rubrafasciculus gen. nov. includes: R. cerasus sp. nov. and R. fijiensis sp. nov..

 

References

  1. Agne, S., Ekins, M., Galitz, A., Hofreiter, M., Preick, M., Straube, N., Wörheide, G. & Erpenbeck, D. (2022) Keratose sponge MuseOMICS: setting reference points in dictyoceratid demosponge phylogeny. Zootaxa, 5195 (3), 296–300. https://doi.org/10.11646/zootaxa.5195.3.9
  2. Ben Ali, A., Wuyts, J., De Wachter, R., Meyer, A. & Van De Peer, Y. (1999) Construction of a variability map for eukaryotic large subunit ribosomal RNA. Nucleic Acids Research, 27 (14), 2825–2831. https://doi.org/10.1093/nar/27.14.2825
  3. Bergquist, P.R. (1978) Sponges. Hutchinson, London and University of California Press, Berkeley and Los Angeles, 268 pp.
  4. Bergquist, P.R. (1980) A revision of the supraspecific classification of the orders Dictyoceratida, Dendroceratida, and Verongida (class Demospongiae). New Zealand Journal of Zoology, 7 (4), 443–503. https://doi.org/10.1080/03014223.1980.11760680
  5. Bergquist, P.R. (1995) Dictyoceratida, Dendroceratida and Verongida from the New Caledonia Lagoon (Porifera: Demospongiae). Memoirs of the Queensland Museum, 38 (1), 1–54. [https://www.biodiversitylibrary.org/item/123808#page/2/mode/1up]
  6. Bergquist, P.R. & Wells, R.J. (1983) Chapter 1. Chemotaxonomy of the Porifera: The Development and Current Status of the Field. In: Scheuer, P.J. (Ed.), Marine Natural Products. Vol. V. Academic Press, New York, New York, pp. 1–50. https://doi.org/10.1016/b978-0-12-624005-4.50008-2
  7. Bergquist, P.R., Cambie, R.C. & Kernan, M.R. (1990) Scalarane sesterterpenes from Collospongia auris, a new thorectid sponge. Biochemical Systematics and Ecology, 18 (5), 349–357. https://doi.org/10.1016/0305-1978(90)90008-4
  8. Biggerstaff, A., Smith, D.J., Jompa, J. & Bell, J. (2017) Metabolic responses of a phototrophic sponge to sedimentation supports transitions to sponge-dominated reefs. Scientific Reports, 7, 2725. https://doi.org/10.1038/s41598-017-03018-y
  9. Burton, M. (1932) Report on a collection of sponges made in South Saghalin by Mr. Tomoe Urita. Science Reports of the Tôhoku Imperial University, Series 4, Biology, 7 (2), 195–206.
  10. Burton, M. (1934) Sponges. Scientific Reports of the Great Barrier Reef Expedition 1928–29, 4 (14), 513–621, pls. 1–2.
  11. Cambie, R.C., Craw, P.A., Bergquist, P.R. & Karuso, P. (1988) Chemistry of Sponges, III. Manoalide Monoacetate and Thorectolide Monoacetate, Two New Sesterter-penoids from Thorectandra excavatus. Journal of Natural Products, 51 (2), 331–334. https://doi.org/10.1021/np50056a026
  12. Campos, P.-E., Pichon, E., Moriou, C., Clerc, P., Trépos, R., Frederich, M., De Voogd, N., Hellio, C., Gauvin-Bialecki, A. & Al-Mourabit, A. (2019) New antimalarial and antimicrobial tryptamine derivatives from the marine sponge Fascaplysinopsis reticulata. Marine Drugs, 17 (3), 167. https://doi.org/10.3390/md17030167
  13. Carter, H.J. (1882) New Sponges, Observations on old ones, and a proposed New Group. Annals and Magazine of Natural History, Series 5, 10 (55), 106–125. [https://www.biodiversitylibrary.org/page/29869818#page/124/mode/1up] https://doi.org/10.1080/00222938209459681
  14. Castresana, J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17 (4), 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
  15. Chombard, C., Boury-Esnault, N. & Tillier, S. (1998) Reassessment of homology of morphological characters in tetractinellid sponges based on molecular data. Systematic Biology, 47 (3), 351–366. https://doi.org/10.1080/106351598260761
  16. Cook, S. (2007) Clarification of dictyoceratid taxonomic characters, and the determination of genera. In: Custódio, M.R., Lôbo-Hajdu, G., Hajdu, E. & Muricy, G. (Eds.), Porifera Research. Biodiversity, Innovation and Sustainability. Livros de Museu Nacional 28, Rio de Janeiro, pp. 265–274. [ISBN 978-85-7427-023-4]
  17. Cook, S. de C. & Bergquist, P.R. (2002) Family Thorectidae Bergquist, 1978. In: Hooper, J. N.A. & Van Soest, R.W.M. (Eds.), Systema Porifera. A guide to the classification of sponges. Vol. 1. Kluwer Academic/Plenum Publishers.New York, Boston, Dordrecht, London, Moscow, pp. 1028–1050. https://doi.org/10.1007/978-1-4615-0747-5_100
  18. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9. 772–772. https://doi.org/10.1038/nmeth.2109
  19. De Laubenfels, M.W. (1948) The order Keratosa of the phylum porifera. A monographic study. Occasional Papers of the Allan Hancock Foundation, No. 3, 1–217.
  20. Dendy, A. (1905) Report on the sponges collected by Professor Herdman,at Ceylon, in 1902. In: Herdman, W.A. (Ed.), Report to the Government of Ceylon on the Pearl Oyster Fisheries of the Gulf of Manaar. Vol. 3. Supplement 18. Royal Society, London, pp. 57–246, pls. I–XVI.
  21. Duchassaing de Fonbressin, P. & Michelotti, G. (1864) Spongiaires de la mer Caraibe. Natuurkundige verhandelingen van de Hollandsche maatschappij der wetenschappen te Haarlem, 21 (2), 1–124, pls. I–XXV. [https://www.biodiversitylibrary.org/item/44660#page/5/mode/1up]
  22. Ekins, M., Erpenbeck, D. & Hooper, J.N.A. (2020a) Carnivorous sponges from the Australian Bathyal and Abyssal zones collected during the RV Investigator 2017 Expedition. Zootaxa, 4774 (1), 1–159. https://doi.org/10.11646/zootaxa.4774.1.1
  23. Ekins, M., Erpenbeck, D., Goudie, L. & Hooper, J.N.A. (2020b) New carnivorous sponges and allied species from the Great Australian Bight. Zootaxa, 4878 (2), 240–260. https://doi.org/10.11646/zootaxa.4878.2.2
  24. Erpenbeck, D. & Van Soest, R.W.M. (2007) Status and perspective of sponge chemosystematics. Marine Biotechnology, 9 (1), 2–19. https://doi.org/10.1007/s10126-005-6109-7
  25. Erpenbeck, D., Sutcliffe, P., Cook, S.D.C., Dietzel, A., Maldonado, M., Van Soest, R.W.M., Hooper, J.N.A. & Wörheide, G. (2012) Horny sponges and their affairs: On the phylogenetic relationships of keratose sponges. Molecular Phylogenetics and Evolution, 63 (3), 809–816. https://doi.org/10.1016/j.ympev.2012.02.024
  26. Erpenbeck, D., Ekins, M., Enghuber, N., Hooper, J.N.A., Lehnert, H., Poliseno, A., Schuster, A., Setiawan, E., de Voogd, N.J., Wörheide, G. & van Soest, R.W.M. (2016) Nothing in (sponge) biology makes sense-except when based on holotypes. Journal of the Marine Biological Association of the United Kingdom, 96 (2), 305–311. https://doi.org/10.1017/s0025315415000521
  27. Erpenbeck, D., Galitz, A., Ekins, M., Cook, S.de C., Van Soest, R.W.M. & Hooper, J.N.A. (2020a) Soft sponges with tricky tree: On the phylogeny of dictyoceratid sponges. Journal of Zoological Systematics and Evolutionary Research, 58 (1), 27–40. https://doi.org/10.1111/jzs.12351
  28. Erpenbeck, D., Gholami, A., Hesni, M.A., Ranjbar, M.S., Galitz, A., Eickhoff, B., Namuth, L., Schumacher, T., Esmaeili, H.R., Wörheide, G. & Teimori, A. (2020b) Molecular biodiversity of Iranian shallow water sponges. Systematics and Biodiversity, 18 (2), 192–202. https://doi.org/10.1080/14772000.2020.1737978
  29. Galitz, A., Nakao, Y., Schupp, P.J., Wörheide, G. & Erpenbeck, D. (2021) A Soft Spot for Chemistry—Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution. Marine Drugs, 19 (8), 448. https://doi.org/10.3390/md19080448
  30. Giovine, M., Scarfi, S., Pozzolini, M., Penna, A. & Cerrano, C. (2013) Cell reactivity to different silica. In: Müller ,W.E.G., Wang, X. & Schröder, H.C. (Eds.), Biomedical inorganic polymers. Bioactivity and applications of natural and synthetic polymeric inorganic molecules. Springer, Heidelberg, pp. 143–174. https://doi.org/10.1007/978-3-642-41004-8_6
  31. Gray, J.E. (1867) Notes on the Arrangement of Sponges, with the Descriptions of some New Genera. Proceedings of the Zoological Society of London, 1867 (2), 492–558, pls. XXVII–XXVIII.
  32. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascue, O. (2010) New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
  33. Helmy, T., El Serehy, H., Mohamed, S.Z. & Van Soest, R.W.M. (2004) Description and classification of dictyoceratid sponges from the northern Red Sea. Beaufortia, 54 (6), 81–91. [https://repository.naturalis.nl/pub/505260]
  34. Hentschel, E. (1912) Kiesel- und Hornschwämme der Aru- und Kei-Inseln. Abhandlungen herausgegeben von der Senckenbergischen naturforschenden Gesellschaft, 34 (3), 293–448, pls. 13–21. [https://www.biodiversitylibrary.org/item/162026#page/7/mode/1up] https://doi.org/10.5962/bhl.title.85325
  35. Hollenbeak, K.H. & Schmitz, F.J. (1977) Aplysinopsin: Antineoplastic tryptophan derivative from marine sponge Verongia spengelii. Lloydia, 40 (5), 479–481.
  36. Hooper, J.N.A. (2019) Sponges. In: Hutchings, P., Kingsford, M. & Hoegh-Guldberg, O. (Eds.), The Great Barrier Reef: Biology, Environment and Management. 2nd Edition. CSIRO Publishing, Melbourne, pp. 377–388. [ISBN 978-90-481-8034-9]
  37. Hooper, J.N.A. & Ekins, M. (2009) Collation and validation of museum collection databases related to the distribution of marne sponges in northern Australia. Technical Reports of the Queensland Museum, 2, 1–224. [https://www.qm.qld.gov.au/About+Us/Publications/Memoirs+of+the+Queensland+Museum/999+Technical+reports]
  38. Hooper, J.N.A. & Wiedenmayer, F. (1994) Porifera. In: Wells, A. (Ed.), Zoological Catalogue of Australia 12. CSIRO, Melbourne, pp. i–xiii + 1–624. [https://trove.nla.gov.au/work/9559139]
  39. Hooper, J.N.A., Hall, K. A., Ekins, M., Erpenbeck, D., Wörheide, G. & Jolley-Rogers, G. (2013) Managing and sharing the escalating number of sponge “unknowns”: the SpongeMaps project. Integrative and Comparative Biology, 53 (3), 473–481. https://doi.org/10.1093/icb/ict038
  40. Jimenez, C., Quinoa, E., Adamczeski, M., Hunter, L.M. & Crews, P. (1991) Novel sponge derived amino acids. 12. Tryptophan derived pigments and accompanying sesterterpenes from Fascaplysinopsis reticulata. Journal of Organic Chemistry, 56 (10), 3403–3410. https://doi.org/10.1021/jo00010a041
  41. Jimenez, C., Quinoa, E. & Crews, P. (1991) Novel marine sponge alkaloids 3. [small beta]-Carbolinium salts from Fascaplysinopsis reticulata. Tetrahedron Letters, 32 (16), 1843–1846. https://doi.org/10.1016/S0040-4039(00)85977-8
  42. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30 (4), 772–780. https://doi.org/10.1093/molbev/mst010
  43. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P.& Drummond, A. (2012) Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28 (12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  44. Kazlauskas, R., Murphy, P.T., Quinn, R.J. & Wells, R.J. (1977) Aplysinopsin, A new tryptophan derivative from a sponge. Tetrahedron Letters, 18 (1), 61–64. https://doi.org/10.1016/S0040-4039(01)92550-X
  45. Kondo, K., Nishi, J., Ishibashi, M. & Kobayashi, J. (1994) Two new tryptophan-derived alkaloids from the Okinawan marine sponge Aplysina sp. J Nat Prod, 57 (7), 1008–1011. https://doi.org/10.1021/np50109a023
  46. Lamouroux, J.V. (1812) Extrait d’un memoire sur la classification des polypiers coralligenes non entierement pierreux. Nouveau Bulletin des Sciences, par la Société Philomatique de Paris, 3, 63–188.
  47. Lendenfeld, R. von. (1888) Descriptive Catalogue of the Sponges in the Australian Museum, Sydney. Taylor & Francis, London, xiv + 260 pp., 12 pls. [https://biodiversitylibrary.org/page/12762613]
  48. Lendenfeld, R. von (1889a) A Monograph of the Horny Sponges. Trübner and Co.: London): iii-iv, 1-936 pp, pls. 1-50.
  49. Lendenfeld, R. von (1889b) Die Verwandtschaftsverhältnisse der Hornschwämme. Zoologische Jahrbücher, Systematik, 4, 1–93. https://doi.org/10.5962/bhl.part.18725
  50. Lévi, C. (1973) Systématique de la classe des Demospongiaria (Démosponges). In: Grassé, P.P. (Ed.), Traité de Zoologie. Anatomie, Systématique, Biologie. Spongiaires. 3 (1). Masson et Cie, Paris, pp. 577–631.
  51. Mai, T., Toullec, J., Van Wynsberge, S., Besson, M., Soulet, S., Petek, S., Aliotti, E., Ekins, M., Hall, K., Erpenbeck, D., Lecchini, D., Beniddir, M., Saulnier, D. & Debitus, C. (2019) Potential of fascaplysin and palauolide from Fascaplysinopsis cf. reticulata to reduce the risk of bacterial infection in fish farming. Fisheries and Aquatic Sciences, 22 (1), 30. https://doi.org/10.1186/s41240-019-0145-0
  52. Minchin, E.A. (1900) Chapter III. Sponges. In: Lankester, E.R. (Ed.), A Treatise on Zoology. Part II. The Porifera and Coelenterata. 2. Adam & Charles Black, London, pp. 1–178. [https://www.biodiversitylibrary.org/page/12044767]
  53. Müller, F. (1867) Ueber Balanus armatus und einen Bastard dieser Art und des Balanus improvisus var. assimilis Darw. Archiv für Naturgeschichte, 33 (1), 329–356. [https://www.biodiversitylibrary.org/page/7059042] https://doi.org/10.1080/00222936808695724
  54. Petek, S., Debitus, C., Alencar, A., Bourgeois, B., Butscher, J., Ekins, M., Fleurisson, D., Folcher, E, Hall, K., Hertrich, L., Hooper, J.N.A., Lerouvreur, F., Levy, P., Maihota, N. Orempuller, J., Pisera, A., Renaud, A., Sutcliffe, P. & Vacelet, J. (2017) s.n. In: Sylvain Petek, S. & Debitus, C. (Eds.), Sponges of Polynesia. Papeete (PYF) IRD, Tahiti, pp. 1–827. [https://www.documentation.ird.fr/hor/fdi:010070137]
  55. Pulitzer-Finali, G. & Pronzato, R. (1999) Horny sponges from the north-eastern coast of Papua New Guinea, Bismark Sea. Journal of the Marine Biological Association of the United Kingdom, 79 (4), 593–607. https://doi.org/10.1017/s0025315498000769
  56. Qin, G.-F., Tang, X.-L., de Voogd, N.J., Li, P.-L. & Li, G.-Q. (2020) Cytotoxic components from the Xisha sponge Fascaplysinopsis reticulata. Natural Products Research, 34 (6), 790–796. https://doi.org/10.1080/14786419.2018.1502765
  57. Roll, D.M., Ireland, C.M., Lu, H.S. & Clardy, J. (1988) Fascaplysin, an unusual antimicrobial pigment from the marine sponge Fascaplysinopsis sp. Journal of Organic Chemistry, 53 (14), 3276–3278. https://doi.org/10.1021/jo00249a025
  58. Schmidt, O. (1862) Die Spongien des adriatischen Meeres. Wilhelm Engelmann, Leipzig, viii + 88, 7 pls.
  59. Schönberg, C. (2016) Happy relationships between marine sponges and sediments—a review and some observations from Australia. Journal of the Marine Biological Association of the United Kingdom, 96 (2), 493–514. https://doi.org/10.1017/S0025315415001411
  60. Segraves, N.L. & Crews, P. (2005) Investigation of brominated tryptophan alkaloids from two Thorectidae sponges: Thorectandra and. Smenospongia J Nat Prod, 68 (10), 1484–1488. [PMID: 16252912] https://doi.org/10.1021/np0501334
  61. Segraves, N.L., Lopez, S., Johnson, T.A., Said, S.A., Fu, X., Schmitz, F.J., Pietraszkiewicz, H., Valeriote, F.A. & Crews, P. (2003) Structures and cytotoxicities of fascaplysin and related alkaloids from two marine phyla—Fascaplysinopsis sponges and Didemnum tunicates. Tetrahedron Letters, 44 (17), 3471–3475. https://doi.org/10.1016/S0040-4039(03)00671-3
  62. Seradj, H., Moein, M., Eskandari, M. & Maaref, F. (2012) Antioxidant Activity of Six Marine Sponges Collected from the Persian Gulf. Iranian Journal of Pharmaceutical Sciences, 8 (4), 249–255. [http://www.ijps.ir/article_6490.html]
  63. Setiawan, E., de Voogd, N.J., Swierts, T., Hooper, J.N.A., Wörheide, G. & Erpenbeck, D. (2016) MtDNA diversity of the Indonesian giant barrel sponge Xestospongia testudinaria (Porifera: Haplosclerida)-implications from partial cytochrome oxidase 1 sequences. Journal of the Marine Biological Association of the United Kingdom, 96 (2), 323–332. https://doi.org/10.1017/S0025315415001149
  64. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  65. Steinmann, G. (1882) Pharetronen-Studien. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 2, 139–191, pls. VI–IX.
  66. Tautz, D. & Renz, M. (1983) An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry, 132 (1), 14–19. https://doi.org/10.1016/0003-2697(83)90419-0
  67. Thiele, J. (1899) Studien über pazifische Spongien. II. Ueber einige Spongien von Celebes. Zoologica. Original-Abhandlungen aus dem Gesamtgebiete der Zoologie, Stuttgart, 24 (2), 1–33. https://doi.org/10.5962/bhl.title.106767
  68. Uriz, M.-J. & Cebrian, E. (2006) Presence of the Indo-Pacific genus Petrosaspongia Bergquist, 1995 (Porifera: Demospongiae) in the Atlantic with description of a new species (P. pharmamari n.sp.). Zootaxa, 1209 (1), 61–68. https://doi.org/10.11646/zootaxa.1209.1.3
  69. Vacelet, J. (1959) Répartition générale des éponges et systématique des éponges cornées de la région de Marseille et de quelques stations méditerranéennes. Recueil des Travaux de la Station marine d’Endoume, 16 (26), 39–101, pls. 1–3.
  70. Wang, Q., Tang, X.L., de Voogt, N.J., Li, P.L. & Li, G.Q. (2019) Aplysinopsin-type and Bromotyrosine-derived Alkaloids from the South China Sea sponge Fascaplysinopsis reticulata. Scientific Reports, 9, 2248. https://doi.org/10.1038/s41598-019-38696-3
  71. Wang, Q., Tang, X., Luo, X., de Voogd, N.J., Li, P. & Li, G. (2015) (+)- and (-)-Spiroreticulatine, a pair of unusual spiro bisheterocyclic quinoline-imidazole alkaloids from the South China Sea sponge Fascaplysinopsis reticulata. Organic Letters, 17 (14), 3458–3461. https://doi.org/10.1021/acs.orglett.5b01503
  72. Wiedenmayer, F. (1977) Shallow-water sponges of the western Bahamas. Experientia Supplementum, 28, 1–287, pls. 1–43. https://doi.org/10.1007/978-3-0348-5797-0
  73. Wörheide, G. (1998) The reef cave dwelling ultraconservative coralline demosponge Astrosclera willeyana Lister 1900 from the Indo-Pacific - Micromorphology, ultrastructure, biocalcification, isotope record, taxonomy, biogeography, phylogeny. Facies, 38, 1–88. https://doi.org/10.1007/BF02537358
  74. Wörheide, G. & Erpenbeck, D. (2007) DNA taxonomy of sponges—progress and perspectives. Journal of the Marine Biological Association of the United Kingdom, 87 (6), 1629–1633. https://doi.org/10.1017/S0025315407058274