Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-01-10
Page range: 1-18
Abstract views: 228
PDF downloaded: 9

Systematics and spatio-temporal evolutionary patterns of the flavopilosa group of Drosophila (Diptera, Drosophilidae)

Programa de Pós-Graduação em Biologia Animal; Instituto de Biociências; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre; RS; Brazil
Programa de Pós-Graduação em Biodiversidade Animal; Universidade Federal de Santa Maria (UFSM); Santa Maria; RS; Brazil
Programa de Pós-Graduação em Genética e Biologia Molecular; Instituto de Biociências; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre; RS; Brazil
Departamento de Ecologia; Zoologia e Genética; Instituto de Biologia; Universidade Federal de Pelotas (UFPel); Pelotas; RS; Brazil
Programa de Pós-Graduação em Biodiversidade Animal; Universidade Federal de Santa Maria (UFSM); Santa Maria; RS; Brazil
Programa de Pós-Graduação em Genética e Biologia Molecular; Instituto de Biociências; Universidade Federal do Rio Grande do Sul (UFRGS); Porto Alegre; RS; Brazil
Diptera DNA barcoding ecological specialization molecular phylogenetics

Abstract

The Drosophila flavopilosa group comprises morphologically cryptic species that are ecologically restricted to feeding, breeding and ovipositing on flowers of Cestrum and Sessea (Solanaceae). Previous studies confirmed the monophyly of the group and the success of DNA barcoding in identifying a subset of its species, but several others remain yet to be evaluated. Furthemore, the taxonomy of the group remains incomplete, with only nine of the 17 species assigned to subgroups. Here, we accessed the phylogenetic relationships and spatio-temporal evolutionary patterns of the flavopilosa group based on a mitochondrial and two nuclear genes, providing the first molecular support to the subdivision of the group and suggesting a new taxonomic scheme for its species. Barcoding proved to be an effective tool, as all species were reciprocally monophyletic and different analyses of species delimitation yielded congruent results. The close relationship of D. flavopilosa with D. cestri and D. cordeiroi was strongly supported, suggesting that the latter should be placed in the flavopilosa subgroup together with the first. Furthermore, D. mariaehelenae was positioned as sister to D. incompta, supporting its inclusion in the nesiota subgroup. Despite new taxonomic assignments, the synapomorphic status of the diagnostic characters proposed for both subgroups was supported. Based on them, each of the remaining species were placed into one of both subgroups. Divergence time estimates suggest that their diversification coincided with the divergence of Sessea and Cestrum, providing an interesting case of coevolution.

 

References

  1. Bächli, G. (2022) TaxoDros: The Database on Taxonomy of Drosophilidae. Available from: https://www.taxodros.uzh.ch/ (accessed 11 May 2022)
  2. Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16 (1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  3. Benson, D.A., Karsch-Mizrachi, I., Clark, K., Lipman, D.J., Ostell, J. & Sayers, E.W. (2012) GenBank. Nucleic Acids Research, 40, D48–D53. https://doi.org/10.1093/nar/gkr1202
  4. Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M.A., Rambaut, A. & Drummond, A.J. (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Computational Biology, 10, e1003537. https://doi.org/10.1371/journal.pcbi.1003537
  5. Bouckaert, R.R. (2010) DensiTree: making sense of sets of phylogenetic trees. Bioinformatics, 26, 1372–1373. https://doi.org/10.1093/bioinformatics/btq110
  6. Breuer, M.E. & Pavan, C. (1950) Genitália masculina de “Drosophila” (Diptera): grupo “annulimana”. Revista Brasileira de Biologia, 10 (4), 469–488.
  7. Brncic, D. (1966) Ecological and Cytogenetic Studies of Drosophila flavopilosa, a Neotropical Species Living in Cestrum Flowers. Evolution, 20, 16–29. https://doi.org/10.2307/2406146
  8. Brncic, D. (1978) A note on the flavopilosa group of species of Drosophila in Rio Grande do Sul, Brazil, with the description of two new species (Diptera, Drosophilidae). Revista Brasileira de Biologia, 38 (3), 647–651.
  9. Cabezas, M.B., Llangarí, L.M. & Rafael, V. (2015) Descripción de cuatro especies nuevas del subgrupo Drosophila fasciola, grupo repleta (Diptera, Drosophilidae) en dos bosques nublados del Ecuador. Iheringia. Série Zoologia, 105 (4), 383–392. https://doi.org/10.1590/1678-476620151054383392
  10. Cordeiro, J., de Oliveira, J.H.F., Schmitz, H.J. & Vizentin‐Bugoni, J. 2020. High niche partitioning promotes highly specialized, modular and non‐nested florivore–plant networks across spatial scales and reveals drivers of specialization. Oikos, 129, 619–629. https://doi.org/10.1111/oik.06866
  11. Courtney, S.P., Kibota, T.T. & Singleton, T.A. (1990) Ecology of Mushroom-feeding Drosophilidae. In: Begon, M., Fitter, A.H. & Macfadyen, A. (Eds.), Advances in Ecological Research. Academic Press, London, pp. 225–274. https://doi.org/10.1016/S0065-2504(08)60056-2
  12. Cumming, J.M. & Wood, D.M. (2017) Adult morphology and terminology. In: Kirk-Spriggs, A.H. & Sinclair, B.J. (Eds.), Manual of Afrotropical Diptera. SANBI Publications, Pretoria, pp. 89–133.
  13. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  14. De Ré, F.C., Robe, L.J., Wallau, G.L. & Loreto, E.L.S. (2017) Inferring the phylogenetic position of the Drosophila flavopilosa group: Incongruence within and between mitochondrial and nuclear multilocus datasets. Journal of Zoological Systematics and Evolutionary Research, 55, 208–221. https://doi.org/10.1111/jzs.12170
  15. De Ré, F.C., Wallau, G.L., Robe, L.J. & Loreto, E.L.S. (2014) Characterization of the complete mitochondrial genome of flower-breeding Drosophila incompta (Diptera, Drosophilidae). Genetica, 142, 525–535. https://doi.org/10.1007/s10709-014-9799-9
  16. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.
  17. Fujisawa, T. & Barraclough, TG. (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology, 62 (5), 707–24. https://doi.org/10.1093/sysbio/syt033
  18. Gottschalk, M.S., Hofmann, P.R.P. & Valente, V.L.S. (2008) Diptera, Drosophilidae: historical occurrence in Brazil. Check List, 4, 485–518. https://doi.org/10.15560/4.4.485
  19. Grimaldi, D.A. (1987) Amber fossil Drosophilidae (Diptera), with particular reference to the Hispaniolan taxa. American Museum Novitates, 2880, 1–23.
  20. Hare, M.P. (2001) Prospects for nuclear gene phylogeography. Trends in Ecology and Evolution, 16 (12), 700–706. https://doi.org/10.1016/S0169-5347(01)02326-6
  21. Hickerson, M.J., Meyer, C.P. & Moritz, C. (2006) DNA Barcoding Will Often Fail to Discover New Animal Species over Broad Parameter Space. Systematic Biology, 55 (5), 729–739. https://doi.org/10.1080/10635150600969898
  22. Iturralde-Vinent, M.A. & MacPhee, R.D.E. (1996) Age and Paleogeographical Origin of Dominican Amber. Science, 273, 1850–1852. https://doi.org/10.1126/science.273.5283.1850
  23. Jowett, T. (1986) Preparation of nucleic acids. In: Roberts, D.B. (Ed.), Drosophila: a practical approach. IRL Press, Oxford, pp. 275–286.
  24. Kimura, M. (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/BF01731581
  25. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870–1874. https://doi.org/10.1093/molbev/msw054
  26. Ludwig, A., Vidal, N.M. & Loreto, E.L.S & Sepel, L.M.N. (2002) Drosophila incompta development without flowers. Drosophila Information Service, 85, 40–41.
  27. Machado, S., Santos, J.P.J, Robe, L.J. & Loreto, E.L.S. (2014) An efficient and cheap entomological aspirator to collect mycophylic and anthophilic adult Drosophilidae flies. Drosophila Information Service, 97, 169–171.
  28. Manfrin, M.H. & Sene, F.M. (2006) Cactophilic Drosophila in South America: A Model for Evolutionary Studies. Genetica, 126, 57–75. https://doi.org/10.1007/s10709-005-1432-5
  29. Meyer, C.P. & Paulay, G. (2005) DNA Barcoding: Error Rates Based on Comprehensive Sampling. PLOS Biology, 3 (12), e422. https://doi.org/10.1371/journal.pbio.0030422
  30. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. Gateway Computing Environments Workshop (GCE), 2010, 1–8. https://doi.org/10.1109/GCE.2010.5676129
  31. O’Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., Queiroz, A. de, Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguilera, O., Aubry, M-P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., Knowlton, N., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J. & Jackson, J.B.C. (2016) Formation of the Isthmus of Panama. Science Advances, 2, e1600883. https://doi.org/10.1126/sciadv.1600883
  32. Olmstead, R.G. (2013) Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: a comparison of continental and intercontinental diversification patterns. Botanical Journal of the Linnean Society, 171, 80–102. https://doi.org/10.1111/j.1095-8339.2012.01306.x
  33. Paradis, E. & Schliep, K. (2019) “ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics, 35, 526–528. https://doi.org/10.1093/bioinformatics/bty633
  34. Pavan, C. & Nacrur, J. (1950) Duas novas espécies de Drosophila (Diptera) do grupo annulimana. Dusenia, 1 (5), 263–274.
  35. Pereira, M.A.Q.R. & Vilela, C.R. (1987) Two new members of the Drosophila annulimana species group (Diptera, Drosophilidae). Revista Brasileira de Entomologia, 31 (1), 13–18.
  36. Pipkin, S.B., Rodriguez, R.L. & Leon, J. (1966) Plant Host Specificity Among Flower-Feeding Neotropical Drosophila (Diptera: Drosophilidae). The American Naturalist, 100, 135–156. https://doi.org/10.1086/282407
  37. Pitnick, S., Markow, T. & Spicer, G.S. (1999) Evolution of multiple kinds of female sperm-storage organs in Drosophila. Evolution, 53 (6), 1804–1822. https://doi.org/10.1111/j.1558-5646.1999.tb04564.x
  38. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
  39. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: https://www.R-project.org/ (accessed 4 December 2023)
  40. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Systematic Biology, 67, 901–904. https://doi.org/10.1093/sysbio/syy032
  41. Ramos Guillín, E. & Rafael, V. (2018) Two new species in the Drosophila flavopilosa and Drosophila morelia species groups (Diptera: Drosophilidae) in the eastern Andes of Ecuador. Revista Peruana de Biología, 25 (2), 69–74. https://doi.org/10.15381/rpb.v25i2.14684
  42. Rampasso, A.S. & O’Grady, P. (2022) Standardized terminology and visual atlas of the external morphology and terminalia for the genus Scaptomyza (Diptera: Drosophilidae). FLY, 16, 37–61. https://doi.org/10.1080/19336934.2021.1969220
  43. Reyes, S.G., Cooper, S.J.B. & Schwarz, M.P. (1999) Species Phylogeny of the Bee Genus Exoneurella Michener (Hymenoptera: Apidae: Allodapini): Evidence from Molecular and Morphological Data Sets. Annals of the Entomological Society of America, 92 (1), 20–29. https://doi.org/10.1093/aesa/92.1.20
  44. Rice, G., David, J.R., Kamimura, Y., Masly, J.P., Mcgregor, A.P., Nagy, O., Noselli, S., Nunes, M.D.S., O’Grady, P., Sánchez-Herrero, E., Siegal, M.L., Toda, M.J., Rebeiz, M., Courtier-Orgogozo, V. & Yassin, A. (2019) A standardized nomenclature and atlas of the male terminalia of Drosophila melanogaster. FLY, 13, 51–64. https://doi.org/10.1080/19336934.2019.1653733
  45. Robe, L.J., Valente, V.L.S., Budnik, M. & Loreto, E.L.S. (2005) Molecular phylogeny of the subgenus Drosophila (Diptera, Drosophilidae) with an emphasis on Neotropical species and groups: A nuclear versus mitochondrial gene approach. Molecular Systematics and Evolution, 36, 623–640. https://doi.org/10.1016/j.ympev.2005.05.005
  46. Robe, L.J., Loreto, E.L.S. & Valente, V.L.S. (2010a) Radiation of the ,,Drosophila“ subgenus (Drosophilidae, Diptera) in the Neotropics. Journal of Zoological Systematics and Evolutionary Research, 48, 310–321. https://doi.org/10.1111/j.1439-0469.2009.00563.x
  47. Robe, L.J., Cordeiro, J., Loreto, E.L.S. & Valente, V.L.S. (2010b) Taxonomic boundaries, phylogenetic relationships and biogeography of the Drosophila willistoni subgroup (Diptera: Drosophilidae). Genetica, 138, 601–617. https://doi.org/10.1007/s10709-009-9432-5
  48. Robe, L.J., De Ré, F.C., Ludwig, A. & Loreto E.L.S. (2013) The Drosophila flavopilosa species group (Diptera, Drosophilidae): an array of exciting questions. FLY, 7, 59–69. https://doi.org/10.4161/fly.23923
  49. Rubinoff, D. & Holland, B.S. (2005) Between Two Extremes: Mitochondrial DNA is neither the Panacea nor the Nemesis of Phylogenetic and Taxonomic Inference. Systematic Biology, 54 (6), 952–961. https://doi.org/10.1080/10635150500234674
  50. Santos, R.C.O & Vilela, C.R. (2005) Breeding sites of Neotropical Drosophilidae (Diptera): IV. living and fallen flowers of Sessea brasiliensis and Cestrum spp. (Solanaceae). Revista Brasileira de Entomologia, 49 (4), 544–551. https://doi.org/10.1590/S0085-56262005000400015
  51. Särkinen, T., Bohs, L., Olmstead, R.G. & Knapp, S. (2013) A phylogenetic framework for evolutionary study of the nightshades (Solanaceae): a dated 1000-tip tree. BMC Evolutionary Biology, 13, 214. https://doi.org/10.1186/1471-2148-13-214
  52. Staden, R. (1996) The staden sequence analysis package. Molecular Biotechnology, 5, 233. https://doi.org/10.1007/BF02900361
  53. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  54. Stoeckle, M. (2003) Taxonomy, DNA, and the Bar Code of Life. BioScience, 53 (9), 796–797. https://doi.org/10.1641/0006-3568(2003)053[0796:TDATBC]2.0.CO;2
  55. Struck, T.H. (2014) TreSpEx—Detection of Misleading Signal in Phylogenetic Reconstructions Based on Tree Information. Evolutionary Bioinformatics, 10, 51–67. https://doi.org/10.4137/EBO.S14239
  56. Suvorov, A., Kim, B.Y., Wang, J., Armstrong, E.E., Peede, D., D’Agostino, E.R.R., Price, D.K., Wadell, P., Lang, M., Courtier-Orgogozo, V., David, J.R., Petrov, D., Matute, D.R., Schrider, D.R. & Comeault, A.A. (2022) Widespread introgression across a phylogeny of 155 Drosophila genomes. Current Biology, 32, 111–123. https://doi.org/10.1016/j.cub.2021.10.052
  57. Swofford, D. (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. [software]
  58. Takada, H. & Okada, T. (1958) Drosophila Survey of Hokkaido, VI. A new species of the virilis group of the genus Drosophila (Diptera). Japanese Journal of Zoology, 12 (2), 111–121.
  59. Takada, H. & Yoon, J.S. (1989) Three new Drosophila species (Diptera: Drosophilidae) from British Columbia, Hawaii and the Canary Islands. Entomological News, 100 (3), 111–121.
  60. Tamura, K. & Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10 (3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023
  61. Tatarenkov, A., Kwiatowski, J., Skarecky, D., Barrio, E. & Ayala, F.J. (1999) On the Evolution of Dopa decarboxylase (Ddc) and Drosophila Systematics. Journal of Molecular Evolution, 48, 445–462. https://doi.org/10.1007/PL00006489
  62. Tatarenkov, A., Z̆urovcová, M. & Ayala, F.J. (2001) Ddc and amd Sequences Resolve Phylogenetic Relationships of Drosophila. Molecular Phylogenetics and Evolution, 20, 321–325. https://doi.org/10.1006/mpev.2001.0967
  63. Turissini, D.A. & Matute, D.R. (2017) Fine scale mapping of genomic introgressions within the Drosophila yakuba clade. PLOS Genetics, 13 (9), e1006971. https://doi.org/10.1371/journal.pgen.1006971
  64. Vela, D. & Rafael, V. (2004) Dos nuevas especies del grupo flavopilosa, género Drosophila (Diptera, Drosophilidae) en el Bosque Pasochoa. Provincia de Pichincha. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 26 (1–2), 7–13. https://doi.org/10.26807/remcb.v26i1-2.556
  65. Vela, D. & Rafael, V. (2005) Catorce nuevas especies del género Drosophila (Diptera, Drosophilidae) en el Bosque húmedo montano del Volcán Pasochoa, Pichincha, Ecuador. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 27 (1–2), 26–41. https://doi.org/10.26807/remcb.v27i1-2.191
  66. Vilela, C.R. & Pereira, M.A.Q.R. (1982) A new species of the annulimana group of the genus Drosophila (Diptera, Drosophilidae). Revista Brasileira de Entomologia, 26 (3/4), 237–240.
  67. Vilela, C.R. (1983) A revision of the Drosophila repleta species group (Diptera, Drosophilidae). Revista Brasileira de Entomologia, 27 (1), 1–114.
  68. Vilela, C.R. (1984a) Occurrence of the Drosophila flavopilosa species group (Diptera, Drosophilidae) in the State of São Paulo (Brazil) with description of one new species. Revista Brasileira de Zoologia, 2 (2), 63–69. https://doi.org/10.1590/S0101-81751983000200004
  69. Vilela, C.R. (1984b) A new Peruvian species of Drosophila (Diptera, Drosophilidae) belonging to the annulimana group. Ciência e Cultura, 37 (12), 1961–1964.
  70. Vilela, C.R. & Pereira, M.A.Q.R. (1985) Redescription of Drosophila talamancana Wheeler (Diptera, Drosophilidae). Revista Brasileira de Entomologia, 29 (2), 181–184.
  71. Vilela, C.R. (2017) The male terminalia of seven American species of Drosophila (Diptera, Drosophilidae). Alpine Entomology, 1, 17–31. https://doi.org/10.3897/alpento.1.20669
  72. Watabe, H. & Higuchi, C. (1979) On a new species of the virilis group of the genus Drosophila (Diptera, Drosophilidae), with revision of the geographical distribution of the group. Annotationes Zoologicae Japonenses, 52 (3), 203–211.
  73. Wheeler, M.R., Takada, H. & Brncic, D. (1962) The flavopilosa species group of Drosophila. In: Studies in Genetics II. University of Texas Publication, Austin, Texas, pp. 395–413.
  74. Wilcox, T.P., Garcia de Leon, F.J., Hendrickson, D.A. & Hillis, D.M. (2004) Convergence among cave catfishes: long-branch attraction and a Bayesian relative rates test. Molecular Phylogenetics and Evolution, 31, 1101–1113. https://doi.org/10.1016/j.ympev.2003.11.006
  75. Yassin, A. (2013) Phylogenetic classification of the Drosophilidae Rondani (Diptera): the role of morphology in the postgenomic era. Systematic Entomology, 38, 349–364. https://doi.org/10.1111/j.1365-3113.2012.00665.x
  76. Young, A.D. & Gillung, J.P. (2020) Phylogenomics—principles, opportunities and pitfalls of big-data phylogenetics. Systematic Entomology, 45, 225–247. https://doi.org/10.1111/syen.12406
  77. Yu, G., Smith, D.K., Zhu, H., Guan, Y. & Lam, T.T. (2017) ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution, 8, 28–36. https://doi.org/10.1111/2041-210X.12628
  78. Zanini, R., Muller, M.J., Vieira, G.C., Valiati, V.H., Depra, M. & Valente, V.L.S. (2018) Combining morphology and molecular data to improve Drosophila paulistorum (Diptera, Drosophilidae) taxonomic status. FLY, 12 (2), 81–94. https://doi.org/10.1080/19336934.2018.1429859