Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-02-15
Page range: 573-585
Abstract views: 41
PDF downloaded: 1

Taxonomic revision of the Scaled Antbird Drymophila squamata (Aves: Thamnophilidae) reveals a new and critically endangered taxon from northeastern Brazil

Departamento de Zoologia; Instituto de Biociências; Universidade de São Paulo; São Paulo; SP; Brazil; Museu de Zoologia da Universidade de São Paulo; São Paulo; SP; Brazil
Departamento de Genética e Biologia Evolutiva; Instituto de Biociências; Universidade de São Paulo; São Paulo; SP; Brazil
Smörbollsgatan 2; 24756 Dalby; Sweden
Departamento de Genética e Biologia Evolutiva; Instituto de Biociências; Universidade de São Paulo; São Paulo; SP; Brazil
Departamento de Biologia e Zoologia & Programa de Pós-graduação em Zoologia; Instituto de Biociências; Universidade Federal de Mato Grosso; Cuiabá; MT; Brazil
Aves Antbirds Atlantic Forest clinal variation Pernambuco Center of Endemism São Francisco River

Abstract

The Scaled Antbird Drymophila squamata is a suboscine passerine endemic to the Atlantic Forest of eastern Brazil. Two subspecies, putatively diagnosed by the presence/absence of white spots on the crown, have traditionally been recognized: the nominate, ranging from Pernambuco to Bahia in northeastern Brazil, and D. squamata stictocorypha, from Minas Gerais to Santa Catarina in southeastern and southern Brazil. Here we combine morphological, acoustic, and genetic data to examine geographic variation in and revise the taxonomy of D. squamata. We show that there are two separately evolving population lineages in D. squamata, one south and the other north of the São Francisco River. The latter is unnamed and is thus described herein. We found that crown variation is not as geographically structured as previously thought, and thus we suggest that D. squamata stictocorypha is not a valid taxon. Finally, we also provide evidence of clinal variation in the species’ vocalizations and underscore the importance of broad geographic sampling when assessing species limits using vocalizations.

 

References

  1. Aleixo, A. (1999) Effects of selective logging on a bird community in the Brazilian Atlantic Forest. The Condor, 101, 537–548. https://doi.org/10.2307/1370183
  2. Amadon, D. (1949) The seventy-five per cent rule for subspecies. The Condor, 51, 250–258. https://doi.org/10.2307/1364805
  3. Bandelt, H.J., Forster, P. & Rohl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  4. Barnett, J.M., Carlos, C.J. & Roda, S.A. (2005) Renewed hope for the threatened avian endemics of northeastern Brazil. Biodiversity and Conservation, 14, 2265–2274. https://doi.org/10.1007/s10531-004-5290-8
  5. Barton, N.H. & Hewitt, G.M. (1989) Adaptation, speciation and hybrid zones. Nature, 341, 497–503. https://doi.org/10.1038/341497a0
  6. Bierregaard, R.O. & Lovejoy, T.Ε. (1989) Effects of forest fragmentation on Amazonian understory bird communities. Acta Amazonica, 19, 215–241. https://doi.org/10.1590/1809-43921989191241
  7. Boucard, M.M. & Berlepsch, H. (1892) List of birds collected by M. Hardy at Porto Real, Brazil, with description of one supposed new species. The Humming Bird, 2, 41–45.
  8. Brooks, T. & Balmford, A. (1996) Atlantic Forest extinctions. Nature, 380, 115. https://doi.org/10.1038/380115a0
  9. Bruford, M.W., Hanotte, O., Brookfield, J.F.Y. & Burke, T. (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel, A.R. (Ed.), Molecular Genetic Analysis of Populations: a Practical Approach. IRL Press, New York, New York, pp. 287–336. https://doi.org/10.1093/oso/9780199636341.003.0009
  10. Carnaval, A.C. & Moritz, C. (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. Journal of Biogeography, 35, 1187–1201. https://doi.org/10.1111/j.1365-2699.2007.01870.x
  11. Charif, R.A., Waack, A.M. & Strickman, L.M. (2010) Raven Pro 1.4. User’s Manual. Cornell Lab of Ornithology, Ithaca, New York. [program]
  12. Cicero, C., Mason, N.A., Jiménez, R.A., Wait, D.R., Wang-Claypool, C.Y. & Bowie, R.C.K. (2021) Integrative taxonomy and geographic sampling underlie successful species delimitation. Ornithology, 138, ukab009. https://doi.org/10.1093/ornithology/ukab009
  13. Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  14. Cory, C.B. & Hellmayr, C.E. (1924) Catalogue of Birds of the Americas and the Adjacent Islands in Field Museum of Natural History. Vol. XIII. Part III. Field Museum Press, Chicago, vii + 369 pp., pl. 3. https://doi.org/10.5962/bhl.title.2815
  15. Coyne, J.A. & Orr, H.A. (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts, 545 pp.
  16. Cracraft, J. (1983) Species concepts and speciation analysis. Current Ornithology, 1, 159–187. https://doi.org/10.1007/978-1-4615-6781-3_6
  17. Cronemberger, Á.A., Aleixo, A., Mikkelsen, E.K. & Weir, J.T. (2020) Postzygotic isolation drives genomic speciation between highly cryptic Hypocnemis antbirds from Amazonia. Evolution, 74, 2512–2525. https://doi.org/10.1111/evo.14103
  18. Del-Rio, G., Rego, M.A., Whitney, B.M., Schunck, F., Silveira, L.F., Faircloth, B.C. & Brumfield, R.T. (2022) Displaced clines in an avian hybrid zone (Thamnophilidae: Rhegmatorhina) within an Amazonian interfluve. Evolution, 76, 455–475. https://doi.org/10.1111/evo.14377
  19. Develey, P.F. & Phalan, B.T. (2021) Bird extinctions in Brazil’s Atlantic Forest and how they can be prevented. Frontiers in Ecology and Evolution, 9, 275. https://doi.org/10.3389/fevo.2021.624587
  20. Dickinson, E. & Christidis, L. (2014) The Howard & Moore Complete Checklist of the Birds of the World. Vol. 2. 4th Edition. Aves Press, Eastbourne, 752 pp.
  21. Donald, P.F. (2021) Accounting for clinal variation and covariation in the assessment of taxonomic limits: why we should remember the “rules.” Ibis, 163, 1106–1109. https://doi.org/10.1111/ibi.12908
  22. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340
  23. Endler, J.A. (1977) Geographic Variation, Speciation and Clines. Princeton University Press, Princeton, New Jersey, 246 pp.
  24. Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50. https://doi.org/10.1177/117693430500100003
  25. Fazza, A.C. (2015) Filogeografia de Dendrocincla turdina e de Drymophila squamata (Aves): subsidiando a reconstrução da história evolutiva de passeriformes da mata Atlântica. PhD Thesis. Universidade de São Paulo, São Paulo, 97 pp.
  26. Friesen, V.L., Congdon, B.C., Walsh, H.E. & Birt, T.P. (1997) Intron variation in Marbled Murrelets detected using analyses of single-stranded conformational polymorphisms. Molecular Ecology, 6, 1047–1058. https://doi.org/10.1046/j.1365-294X.1997.00277.x
  27. Goerck, J.M. (1999) Ecology, Evolution, and Biogeography of Drymophila Antbirds (Thamnophilidae, Aves) in the Neotropics. PhD Thesis, University of Missouri-St. Louis, St. Louis, 146 pp.
  28. Grantsau, R. (2010) Guia Completo para Identificação das Aves do Brasil. Vol. 2. Vento Verde, São Carlos, 656 pp.
  29. Hackett, S.J. (1996) Molecular phylogenetics and biogeography of tanagers in the genus Ramphocelus (Aves). Molecular Phylogenetics and Evolution, 5, 368–382. https://doi.org/10.1006/mpev.1996.0032
  30. Harvey, M.G., Bravo, G.A., Claramunt, S., Cuervo, A.M., Derryberry, G.E., Battilana, J., Seeholzer, G.F., McKay, J.S., O’Meara, B.C., Faircloth, B.C., Edwards, S.V., Pérez-Emán, J., Moyle, R.G., Sheldon, F.H., Aleixo, A., Smith, B.T., Chesser, R.T., Silveira, L.F., Cracraft, J., Brumfield, R.T. & Derryberry, E.P. (2020) The evolution of a tropical biodiversity hotspot. Science, 370, 1343–1348. https://doi.org/10.1126/science.aaz6970
  31. del Hoyo, J. (2020) All the Birds of the World. Lynx Edicions, Barcelona, Spain, 968 pp.
  32. Isler, M.L., Cuervo, A.M., Bravo, G.A. & Brumfield, R.T. (2012) An integrative approach to species-level systematics reveals the depth of diversification in an Andean thamnophilid, the Long-tailed Antbird. The Condor, 114, 571–583. https://doi.org/10.1525/cond.2012.120012
  33. Isler, M.L., Isler, P.R. & Brumfield, R.T. (2005) Clinal variation in vocalizations of an antbird (Thamnophilidae) and implications for defining species limits. The Auk, 122, 433–444. https://doi.org/10.1093/auk/122.2.433
  34. Isler, M.L., Isler, P.R. & Whitney, B.M. (1997) Biogeography and systematics of the Thamnophilus punctatus (Thamnophilidae) complex. Ornithological Monographs, 48, 355–381. https://doi.org/10.2307/40157543
  35. Isler, M.L., Isler, P.R. & Whitney, B.M. (1998) Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). The Auk, 115, 577–590. https://doi.org/10.2307/4089407
  36. Isler, M.L., Isler, P.R. & Whitney, B.M. (1999) Species limits in antbirds (Passeriformes: Thamnophilidae): The Myrmotherula surinamensis complex. The Auk, 116, 83–96. https://doi.org/10.2307/4089456
  37. Isler, M.L., Isler, P.R. & Whitney, B.M. (2007) Species limits in antbirds (Thamnophilidae): The Warbling Antbird (Hypocnemis cantator) complex. The Auk, 124, 11–28. https://doi.org/10.1093/auk/124.1.11
  38. Isler, M.L. & Maldonado-Coelho, M. (2017) Calls distinguish species of antbirds (Aves: Passeriformes: Thamnophilidae) in the genus Pyriglena. Zootaxa, 4291 (2), 275–294. https://doi.org/10.11646/zootaxa.4291.2.3
  39. Isler, M.L. & Whitney, B.M. (2018) Reevaluation of the taxonomic positions of members of the Epinecrophylla haematonota (Aves: Passeriformes: Thamnophilidae) antwren complex including E. fjeldsaai based on vocalizations. The Wilson Journal of Ornithology, 130, 908–914. https://doi.org/10.1676/1559-4491.130.4.908
  40. Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P. & Drummond, A. (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
  41. Laurance, S.G.W. (2004) Responses of understory rain forest birds to road edges in central Amazonia. Ecological Applications, 14, 1344–1357. https://doi.org/10.1890/03-5194
  42. Laurance, S.G.W., Stouffer, P.C. & Laurance, W.F. (2004) Effects of road clearings on movement patterns of understory rainforest birds in Central Amazonia. Conservation Biology, 18, 1099–1109. https://doi.org/10.1111/j.1523-1739.2004.00268.x
  43. Lees, A.C., Albano, C., Kirwan, G.M., Pacheco, J.F. & Whittaker, A. (2014) The end of hope for Alagoas Foliage-gleaner Philydor novaesi. Neotropical Birding, 14, 20–28.
  44. Leigh, J.W. & Bryant, D. (2015) POPART: full-feature software for haplotype network construction. Methods in Ecology and Evolution, 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410
  45. Lichtenstein, H. (1823) Verzeichniss der Doubletten des Zoologischen Museums der Königl. Universität zu Berlin: nebst Beschreibung vieler bisher unbekannter Arten von Säugethieren, Vögeln, Amphibien und Fischen. Commission bei T. Trautwein, Berlin, 118 pp.
  46. Lima, R.D., Silveira, L.F., Lemos, R.C.A., Lobo-Araújo, L.W., Andrade, A.B., Francisco, M.R. & Efe, M.A. (2022) An annotated avian inventory of the Brazilian state of Alagoas, one of the world’s most threatened avifauna. Papéis Avulsos de Zoologia, 62, e202262034. https://doi.org/10.11606/1807-0205/2022.62.034
  47. Macedo, G., Silva, M., Amaral, F.R. & Maldonado-Coelho, M. (2019) Symmetrical discrimination despite weak song differentiation in 2 suboscine bird sister species. Behavioral Ecology, 30, 1205–1215. https://doi.org/10.1093/beheco/arz066
  48. Maldonado-Coelho, M., Santos, S.S.D., Isler, M.L., Svensson-Coelho, M., Sotello-Muñoz, M., Miyaki, C.Y., Ricklefs, R.E. & Blake, J.G. (2023) Evolutionary and ecological processes underlying geographic variation in innate bird songs. The American Naturalist, 202 (2), E31–E52. https://doi.org/10.1086/725016
  49. Mayr, E. (1942) Systematics and the Origin of Species. Columbia University Press, New York, New York, 334 pp.
  50. Naumburg, E.M.B. (1939) Studies of birds from eastern Brazil and Paraguay, based on a collection made by Emil Kaempfer. Bulletin of the American Museum of Natural History, 76, 231–276.
  51. Orme, C.D.L., Mayor, S., dos Anjos, L., Develey, P.F., Hatfield, J.H., Morante-Filho, J.C., Tylianakis, J.M., Uezu, A. & Banks-Leite, C. (2019) Distance to range edge determines sensitivity to deforestation. Nature Ecology & Evolution, 3, 886–891. https://doi.org/10.1038/s41559-019-0889-z
  52. Patten, M.A. & Unitt, P. (2002) Diagnosability versus mean differences of Sage Sparrow subspecies. The Auk, 119, 26–35. https://doi.org/10.1093/auk/119.1.26
  53. Paynter, R.A. & Traylor, M.A. (1991) Ornithological Gazetteer of Brazil. 2 Vols. Museum of Comparative Zoology, Cambridge, Massachusetts, 789 pp. https://doi.org/10.5962/bhl.title.14635
  54. Pereira, G.A., Dantas, S. de M., Silveira, L.F., Roda, S.A., Albano, C., Sonntag, F.A., Leal, S., Periquito, M.C., Malacco, G.B. & Lees, A.C. (2014) Status of the globally threatened forest birds of northeast Brazil. Papéis Avulsos de Zoologia, 54, 177–194. https://doi.org/10.1590/0031-1049.2014.54.14
  55. Peters, J.L. (1951) Check-list of the Birds of the World. Vol. 7. Museum of Comparative Zoology, Cambridge, Massachusetts, 318 pp.
  56. Pinto, O.M.O. (1935) Aves da Bahia: notas críticas e observações sobre uma collecção feita no Reconcavo e na parte meridional do Estado. Revista do Museu Paulista, 19, 1–326.
  57. Pinto, O.M.O. (1938) Catálogo das aves do Brasil e lista dos exemplares que as representam no Museu Paulista. 1.a parte. Aves não Passeriformes e Passeriformes não Oscines excluida a Fam. Tyrannidae e seguintes. Revista do Museu Paulista, 1938, 1–5666. https://doi.org/10.5962/bhl.title.99663
  58. Pinto, O.M.O. (1978) Novo Catálogo das Aves do Brasil. 1° parte. Empresa Gráfica Revista dos Tribunais, São Paulo, 446 pp.
  59. Prychitko, T.M. & Moore, W.S. (1997) The utility of DNA sequences of an intron from the β-Fibrinogen gene in phylogenetic analysis of woodpeckers (Aves: Picidae). Molecular Phylogenetics and Evolution, 8, 193–204. https://doi.org/10.1006/mpev.1997.0420
  60. de Queiroz, K. (1998) The General Lineage Concept of Species, species criteria, and the process of speciation. In: Howard, D.J. & Berlocher, S.H. (Eds.), Endless Forms: Species and Speciation. Oxford University Press, Oxford, pp. 57–75.
  61. Ranta, P., Blom, T., Niemela, J., Joensuu, E. & Siitonen, M. (1998) The fragmented Atlantic rain forest of Brazil: size, shape and distribution of forest fragments. Biodiversity and Conservation, 7, 385–403. https://doi.org/10.1023/A:1008885813543
  62. Remsen, J.V. (2005) Pattern, process, and rigor meet classification. The Auk, 122, 403–413. https://doi.org/10.1093/auk/122.2.403
  63. Roda, S.A. (2003) Aves do Centro de Endemismo Pernambuco: Composição, Biogeografia e Conservação. PhD Thesis. Universidade Federal do Pará, Belém, 534 pp.
  64. Seddon, N. & Tobias, J.A. (2010) Character displacement from the receiver’s perspective: species and mate recognition despite convergent signals in suboscine birds. Proceedings of the Royal Society B, 277, 2475–2483. https://doi.org/10.1098/rspb.2010.0210
  65. Silva, J.M.C. & Tabarelli, M. (2000) Tree species impoverishment and the future flora of the Atlantic Forest of northeast Brazil. Nature, 404, 72–74. https://doi.org/10.1038/35003563
  66. Silveira, L.F., Olmos, F. & Long, A.J. (2003) Birds in Atlantic Forest fragments in north-east Brazil. Cotinga, 20, 32–46.
  67. Sorenson, M.D., Ast, J.C., Dimcheff, D.E., Yuri, T. & Mindell, D.P. (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution, 12, 105–114. https://doi.org/10.1006/mpev.1998.0602
  68. Stouffer, P.C. & Bierregaard, R.O. (1995) Use of Amazonian Forest fragments by understory insectivorous birds. Ecology, 76, 2429–2445. https://doi.org/10.2307/2265818
  69. Tabarelli, M., Aguiar, A.V., Grillo, A.S. & Santos, A.M.M. (2006) Fragmentação e perda de habitats na Mata Atlântica ao norte do Rio São Francisco. In: Siqueira-Filho, J.Á. & Leme, E.C.M. (Eds.), Fragmentos de Mata Atlântica do Nordeste: Biodiversidade, Conservação e suas Bromélias. Andrea Jacobson Estúdio Editorial, Rio de Janeiro, pp. 80–99.
  70. Teixeira, D.M. (1986) The avifauna of northeastern Brazilian Atlantic Forests: a case of mass extinction? Ibis, 128, 167–168.
  71. Teixeira, D.M. (1987) Notas sobre Terenura sicki Teixeira & Gonzaga, 1983 (Aves, Formicariidae). Boletim do Museu Paraense Emílio Goeldi, 3, 241–251.
  72. Teixeira, D.M., Nacinovic, J.B. & Tavares, M.S. (1986) Notes on some birds of northeastern Brazil. Bulletin of the British Ornithologists’ Club, 106, 70–74.
  73. Vanzolini, P.E. (1992) A Supplement to the Ornithological Gazetteer of Brazil. Museu de Zoologia da Universidade de São Paulo, São Paulo, 252 pp.
  74. Zimmer, K.J. & Isler, M.L. (2003) Family Thamnophilidae (Typical Antbirds). In: del Hoyo, J., Elliot, A. & Christie, D.A. (Eds.), Handbook of the Birds of the World. Lynx Edicions, Barcelona, pp. 448–681.