Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-03-25
Page range: 527-548
Abstract views: 12
PDF downloaded: 0

Violins we see, species we don’t… Species delimitation of the spider genus Loxosceles Heineken & Lowe (Araneae: Sicariidae) from North America using morphological and molecular evidence

Posgrado en Ciencias Biológicas (Doctorado); Centro Tlaxcala de Biología de la Conducta (CTBC); Universidad Autónoma de Tlaxcala (UATx); Carretera Federal Tlaxcala-Puebla; Km. 1.5; C.P. 90062; Tlaxcala; Mexico
Colección de Aracnológica (CARCIB); Programa Académico de Planeación Ambiental y Conservación (PLAYCO); Centro de Investigaciones Biológicas del Noroeste (CIBNOR) S.C. Km. 1 Carretera a San Juan de La Costa “EL COMITAN”; C.P. 23205; La Paz; Baja California Sur; Mexico
Araneae DNA barcoding integrative taxonomy Synspermiata violinist spiders molecular methods

Abstract

In modern systematics, different sources of evidence are commonly used for the discovery, identification, and delimitation of species, especially when morphology fails to delineate between species or in underestimated species complexes or cryptic species. In this study, morphological data and two DNA barcoding markers—cytochrome c oxidase subunit I (COI) and internal transcribed spacer 2 (ITS2)—were used to delimit species in the spider genus Loxosceles from North America. The molecular species delimitation analyses were carried out using three different methods under the corrected p-distance Neighbor-Joining (NJ) criteria: 1) Assemble Species by Automatic Partitioning (ASAP), 2) General Mixed Yule Coalescent model (GMYC), and 3) Bayesian Poisson Tree Processes (bPTP). The analyses incorporated 192 terminals corresponding to 43 putative species of Loxosceles, of which 15 are newly recognized herein, as putative new species, based on morphology and congruence between molecular methods with COI. The average intraspecific genetic distance (p-distance) was <2%, whereas the average interspecific genetic distance was 15.6%. The GMYC and bPTP molecular methods recovered 65-79 and 69 species respectively, overestimating the diversity in comparison with morphology, whereas the ASAP method delimited 60 species. The morphology of primary sexual structures (males palps and female seminal receptacles) was congruent with most of the molecular methods mainly with COI, showing that they are robust characters for identification at the species level. For species delimitation COI was more informative than ITS2. The diversity of Loxosceles species is still underestimated for North America, particularly in Mexico which holds the highest diversity of this genus worldwide.

 

References

  1. Astrin, J.J. & Stueben, P.E. (2008) Phylogeny in cryptic weevils: molecules, morphology and new genera of western Palaearctic Cryptorhynchinae (Coleoptera: Curculionidae). Invertebrate Systematics 22, 503‒522. 2. https://doi.org/10.1071/IS07057
  2. Barrett, R.D. & Hebert, P.D. (2005) Identifying spiders through DNA barcodes. Canadian Journal of Zoology, 83, 481‒491. https://doi.org/10.1139/z05-024
  3. Binford, G.J., Cordes, M.H. & Wells, M.A. (2005) Sphingomyelinase D from venoms of Loxosceles spiders: evolutionary insights from cDNA sequences and gene structure. Toxicon, 45 (5), 547‒560. https://doi.org/10.1016/j.toxicon.2004.11.011
  4. Brignoli, P.M. (1969) Note sugli Scytodidae d’Italia e Malta (Araneae). Fragmenta Entomologica, 6, 121‒166
  5. Buckup EH. (1980) Variação interpopulacional dos receptáculos em aranhas do grupo spadicea do gênero Loxosceles Heinecken & Lowe, 1832 (Araneae; Scytodidae). Iheringia ser Zoologia, 55, 137–147.
  6. Cadena, C.D. & Zapata, F. (2021) The genomic revolution and species delimitation in birds (and other organisms): Why phenotypes should not be overlooked. The Auk, 138 (2), ukaa069. https://doi.org/10.1093/ornithology/ukaa069
  7. Candia‒Ramírez, D.T. & Francke, O.F. (2021) Another stripe on the tiger makes no difference? Unexpected diversity in the widespread tiger tarantula Davus pentaloris (Araneae: Theraphosidae: Theraphosinae). Zoological Journal of the Linnean Society, 192 (1), 75‒104. https://doi.org/10.1093/zoolinnean/zlaa107
  8. Carstens, B.C., Pelletier, T.A., Reid, N.M. & Satler, J.D. (2013) How to fail at species delimitation. Molecular ecology, 22 (17), 4369‒4383. https://doi.org/10.1111/mec.12413
  9. Ceccarelli, F.S., Garduño Villaseñor, L.A. & Hernández Salgado, L.C. (2023) Genetic diversity and population histories of two species of Phidippus (Araneae: Salticidae) from northwestern Mexico. Revista Mexicana de Biodiversidad, 94 (e945052), 1‒14. https://doi.org/10.22201/ib.20078706e.2023.94.5052
  10. Ciaccio, E., Debray, A. & Hedin, M. (2022) Phylogenomics of paleoendemic lampshade spiders (Araneae, Hypochilidae, Hypochilus), with the description of a new species from montane California. ZooKeys, 1086, 163. https://doi.org/10.3897/zookeys.1086.77190
  11. Cook, L.G., Edwards, R.D., Crisp, M.D. & Hardy, N.B. (2010) Need morphology always be required for new species descriptions?. Invertebrate systematics, 24 (3), 322‒326. https://doi.org/10.1071/IS10011
  12. Cortez-Roldán, M.R. (2018) Arañas de importancia médica: Distribución y Modelaje de Nicho Ecológico de las especies de arañas violinistas del género Loxosceles Heineken y Lowe, 1832 (Araneae, Sicariidae) de México. Tesis de Licenciatura, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco. [unknown pagination]
  13. Crews, S.C. & Hedin, M. (2006) Studies of morphological and molecular phylogenetic divergence in spiders (Araneae: Homalonychus) from the American southwest, including divergence along the Baja California Peninsula. Molecular Phylogenetics and Evolution, 38 (2), 470‒487. https://doi.org/10.1016/j.ympev.2005.11.010
  14. Dayrat, B. (2005) Towards integrative taxonomy. Biological Journal of the Linnean Society, 85, 407–415. https://doi.org/10.1111/j.1095-8312.2005.00503.x
  15. DeSalle, R., Egan, M.G. & Siddall, M. (2005) The unholy trinity: Taxonomy, species delimitation and DNA barcoding. Philosophical Transactions Royal Society B, 360, 1905–1916. https://doi.org/10.1098/rstb.2005.1722
  16. Drummond, A.J., Xie, W. & Heled, J. (2012) Bayesian inference of species trees from multilocus data using BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 8, 1–18. https://doi.org/10.1093/molbev/msp274
  17. Duncan, R.P., Rynerson, M.R., Ribera, C. & Binford, G.J. (2010) Diversity of Loxosceles spiders in Northwestern Africa and molecular support for cryptic species in the Loxosceles rufescens lineage. Molecular Phylogenetic and Evolution, 55 (1), 234–248. https://doi.org/10.1016/j.ympev.2009.11.026
  18. Eberle, J., Dimitrov, D., Valdez-Mondragón, A., Huber, B.A. (2018) Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology, 18 (1), 141. https://doi.org/10.1186/s12862-018-1244-8
  19. Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. (1994) DNA primers for amplification of mitochondrial cytocrome c oxidasa subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294‒299.
  20. Fonseca, G., Derycke, S. & Moens, T. (2008) Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society, 94, 737‒753. https://doi.org/10.1111/j.1095-8312.2008.01015.x
  21. Gertsch, W.J. (1958) The spider genus Loxosceles in North America, Central America, and the
  22. West Indies. American Museum Novitates, 1907, 1‒46
  23. Gertsch, W.J. & Ennik, F. (1983) The spider genus Loxosceles in North America, Central America, and the West Indies (Araneae, Loxoscelidae). Bulletin of the American Museum of Natural History, 175, 264‒360.
  24. Hall, T.A. (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95‒98.
  25. Hamilton, C.A., Formanowicz, D.R. & Bond, J.E. (2011) Species delimitation and phylogeography of Aphonopelma hentzi (Araneae, Mygalomorphae, Theraphosidae): cryptic diversity in North American tarantulas. PLoS ONE, 6, e26207. https://doi.org/10.1371/journal.pone.0026207
  26. Hendrixson, B.E., DeRussy, B.M., Hamilton, C.A. & Bond, J.E. (2013) An exploration of species boundaries in turret-building tarantulas of the Mojave Desert (Araneae, Mygalomorphae, Theraphosidae, Aphonopelma). Molecular Phylogenetics and Evolution, 66 (1), 327‒340. https://doi.org/10.1016/j.ympev.2012.10.004
  27. Hamilton, C.A., Hendrixson, B.E., Brewer, M.S. & Bond, J.E. (2014) An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Molecular Phylogenetics and Evolution, 71, 79–93. https://doi.org/10.1016/j.ympev.2013.11.007
  28. Hazzi, N. & Hormiga, G. (2021) Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae). ZooKeys, 1022 (31), 13–50. https://doi.org/10.3897/zookeys.1022.60571
  29. Hebert, P.D., Cywinska, A., Ball, S.L. & DeWaard, J.R. (2003a) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270 (1512), 313‒321. https://doi.org/10.1098/rspb.2002.2218
  30. Hebert, P.D., Ratnasingham, S. & De Waard, J.R. (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270, S96‒S99. https://doi.org/10.1098/rsbl.2003.0025
  31. Hebert, P.D.N., Stoeckle, M.Y., Zemlak, T.S., Francis, C.M. & Godfray, C. (2004) Identification of birds through DNA barcodes. PLoS Biology, 2 (10), e312. https://doi.org/10.1371/journal.pbio.0020312
  32. Hillis, D.M., Chambers, E.A. & Devitt, T.J. (2021) Contemporary methods and evidence for species delimitation. Ichthyology & Herpetology, 109 (3), 895-903. https://doi.org/10.1643/h2021082
  33. Huber, B.A. & Carvalho, L.S. (2019) Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa, 4546 (1), 1‒96. https://doi.org/10.11646/zootaxa.4546.1.1
  34. Huber, B.A. & Gonzalez, A.P. (2001) A new genus of pholcid spider (Araneae, Pholicidae) endemic to western Cuba, with a case of female genitalic dimorphism. American Museum Novitates, 2001, 1–23.
  35. Huber, B.A. & Villarreal, O. (2020) On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy, 718, 1‒317. https://doi.org/10.5852/ejt.2020.718.1101
  36. Ji, Y.J., Zhang, D.X. & He, LJ. (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes, 3, 581–585. https://doi.org/10.1046/j.1471-8286.2003.00519.x
  37. Juárez-Sánchez, A.R. (2022) Variación morfológica, molecular y filogeografía del complejo de especies Loxosceles colima Gertsch, 1958 (Araneae, Sicariidae), ¿una especie o varias? Tesis de Maestría, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco. [unknown pagination]
  38. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods, 14 (6), 587‒589. https://doi.org/10.1038/nmeth.4285
  39. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
  40. Kumar, S., Stecher, G. & Tamura, K. (2016) MEGA7: Molecular evolutionary genetics analysis v.7.0 for bigger datasets. Molecular Biology and Evolution, 33 (7), 1870–1874. https://doi.org/10.1093/molbev/msw054
  41. Luo, A., Ling, C., Ho, S.Y. & Zhu, C.D. (2018) Comparison of methods for molecular species delimitation across a range of speciation scenarios. Systematic Biology, 67 (5), 830‒846. https://doi.org/10.1093/sysbio/syy011
  42. Massa, M. & Ribera, C. (2021) The Mediterranean species of genus Loxosceles Heineken amp; Lowe, 1832 (Araneae: Sicariidae): Loxosceles imazighen sp. n. from Morocco and first description of the female of L. mrazig Ribera amp; Planas, 2009 from Tunisia. Zootaxa, 5071(3), 326‒348. https://doi.org/10.11646/zootaxa.5071.3.2
  43. Navarro-Rodríguez, C.I. (2019) Delimitación de las especies mexicanas de arañas del género Loxosceles Heineken & Lowe (Araneae, Sicariidae) del Centro Occidente de México con evidencia molecular y morfológica. Tesis de Maestría, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco. [unknown pagination]
  44. Navarro-Rodríguez, C.I. & Valdez-Mondragón, A. (2020) Description of a new species of Loxosceles Heineken & Lowe (Araneae, Sicariidae) recluse spiders from Hidalgo, Mexico, under integrative taxonomy: morphological and DNA barcoding data (COI+ ITS2). European Journal of Taxonomy, 704. [published online] https://doi.org/10.5852/ejt.2020.704
  45. Nolasco, S. & Valdez-Mondragón, A. (2022) To be or not to be... Integrative taxonomy and species delimitation in the daddy long-legs spiders of the genus Physocyclus (Araneae, Pholcidae) using DNA barcoding and morphology. ZooKeys, 1135. https://doi.org/10.3897/zookeys.1135.94628
  46. Ortiz, D. & Francke, O.F. (2016) Two DNA barcodes and morphology for multi-method species delimitation in Bonnetina tarantulas (Araneae: Theraphosidae). Molecular Phylogenetics and Evolution, 101, 176–193. https://doi.org/10.1016/j.ympev.2016.05.003
  47. Ortiz, D., Francke, O.F. & Bond, J.E. (2018) A tangle of forms and phylogeny: extensive morphological homoplasy and molecular clock heterogeneity in Bonnetina and related tarantulas. Molecular Phylogenetics and Evolution, 127, 55‒73. https://doi.org/10.1016/j.ympev.2018.05.013
  48. Padial, J. M., Castroviejo‐Fisher, S., Koehler, J., Vila, C., Chaparro, J.C. & De la Riva, I. (2009). Deciphering the products of evolution at the species level: the need for an integrative taxonomy. Zoologica Scripta, 38 (4), 431-447. https://doi.org/10.1111/j.1463-6409.2008.00381.x
  49. Padial, J.M., Miralles, A., De la Riva, I. & Vences, M. (2010) The integrative future of taxonomy. Frontiers in Zoology, 7, 1‒16. https://doi.org/10.1186/1742-9994-7-16
  50. Pante, E., Schoelinck, C. & Puillandre, N. (2015) From integrative taxonomy to species description: one step beyond. Systematic Biology, 64 (1), 152‒160. https://doi.org/10.1093/sysbio/syu083
  51. Planas, E. & Ribera, C. (2014) Uncovering overlooked island diversity: colonization and diversification of the medically important spider genus Loxosceles (Arachnida: Sicariidae) on the Canary Islands. Journal of biogeography, 41 (7), 1255‒1266. https://doi.org/10.1111/jbi.12321
  52. Planas, E. & Ribera, C. (2015) Description of six new species of Loxosceles (Araneae: Sicariidae) endemic to the Canary Islands and the utility of DNA barcoding for their fast and accurate identification. Zoological Journal Linnean Society, 174, 47–73.
  53. Pons, J., Barraclough, T.G. & Gomez-Zurita, J. (2006) Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609. https://doi.org/10.1080/10635150600852011
  54. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: Assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
  55. Rambaut, A., Drummond, A.J. (2003–2013) TRACER, MCMC trace analysis tool. Version 1.6. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh and Department of Computer Science, University of Auckland, Auckland. [program]
  56. Raxworthy, C.J., Ingram, C.M., Rabibisoa, N. & Pearson, R.G. (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Systematic biology, 56 (6), 907‒923. https://doi.org/10.1080/10635150701775111
  57. Ribera, C. & Planas, E. (2009) A new species of Loxosceles (Araneae, Sicariidae) from Tunisia. ZooKeys, 16, 217–225. https://doi.org/10.3897/zookeys.16.232
  58. Rissler, L.J. & Apodaca, J. J. (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic biology, 56 (6), 924‒942. [http://www.jstor.org/stable/20143103]
  59. Rohlf, F.J. & Marcus, L.F. (1993) A revolution morphometrics. Trends in ecology & evolution, 8 (4), 129‒132. https://doi.org/10.1016/0169-5347(93)90024-J
  60. Rozen, S., Skaletsky, J,H. (2000) Primer3 on the www for general users and for biologist programmers. In: Krawertz, S., Misener, S. (Eds.), Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, New Jersey, pp. 365‒386. https://doi.org/10.1385/1-59259-192-2:365
  61. Satler, J.D., Carstens, B.C. & Hedin, M. (2013) Multilocus species delimitation in a complex of morphologically conserved trapdoor spiders (Mygalomorphae, Antrodiaetidae, Aliatypus). Systematic biology, 62 (6), 805‒823. https://doi.org/10.1093/sysbio/syt041
  62. Seiter, M., Strobl, L., Schwaha, T., Prendini, L. & Schramm, F.D. (2022) Morphometry of the pedipalp patella provides new characters for species-level taxonomy in whip spiders (Arachnida, Amblypygi): A test case with description of a new species of Phrynus. Zoologischer Anzeiger, 298, 10‒28. https://doi.org/10.1016/j.jcz.2022.02.004
  63. Smith, M.L. & Carstens, B.C. (2022) Species delimitation using molecular data. In: Species Problems and Beyond. CRC Press, Boca Raton, Florida, pp. 145‒160.
  64. Solís-Catalán, K.P. (2020) Análisis morfométrico de estructuras sexuales y somáticas de las especies mexicanas de arañas del género Loxosceles Heineken y Lowe (Araneae, Sicariidae) del Centro-Occidente de México. Tesis de Maestría, Universidad Autónoma de Tlaxcala, Santa María Acuitlapilco. [unknown pagination]
  65. Souza, M.F. & Ferreira, R.L. (2018) A new highly troglomorphic Loxosceles (Araneae: Sicariidae) from Brazil. Zootaxa, 4438 (3), 575‒587. https://doi.org/10.11646/zootaxa.4438.3.9
  66. Tahami, M.S., Zamani, A., Sadeghil, S. & Ribera, C. (2017) A new species of Loxosceles Heineken & Lowe, 1832 (Araneae: Sicariidae) from Iranian caves. Zootaxa, 4318 (2): 377–387. https://doi.org/10.11646/zootaxa.4318.2.10
  67. Trifinopoulos, J., Nguyen, L.T., von Haeseler, A. & Minh, B.Q. (2016) W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic acids research, 44 (W1), W232‒W235. https://doi.org/10.1093/nar/gkw256
  68. Valdez-Mondragón, A. (2010) Revisión taxonómica de” Physocyclus” Simon, 1893 (Araneae: Pholcidae), con la descripción de especies nuevas de México. Revista Ibérica de Aracnología, 18, 3‒80.
  69. Valdez-Mondragón, A. (2020) COI mtDNA barcoding and morphology for species delimitation in the spider genus Ixchela Huber (Araneae: Pholcidae), with the description of two new species from Mexico. Zootaxa, 4747 (1), 054–076. https://doi.org/10.11646/zootaxa.4747.1.2
  70. Valdez-Mondragón, A. & Francke, O.F. (2015) Phylogeny of the spider genus Ixchela Huber, 2000 (Araneae: Pholcidae) based on morphological and molecular evidence (COI and 16S), with a hypothesized diversification in the Pleistocene. Zoological Journal of the Linnean Society, 175, 20‒58. https://doi.org/10.1111/zoj.12265
  71. Valdez-Mondragón, A., Cortez-Roldán, M.R., Juárez-Sánchez, A.R., Solís-Catalán, K.P. & Navarro-Rodríguez, C.I. (2018a) Arañas de Importancia Médica: Arañas violinistas del género Loxosceles en México, ¿qué sabemos acerca de su distribución y biología hasta ahora? Boletín AMXSA, 2, 14‒24.
  72. Valdez-Mondragón, A., Cortez-Roldán, M.R., Juárez-Sánchez, A.R. & Solís-Catalán, K.P. (2018b) A new species of Loxosceles Heineken & Lowe (Araneae, Sicariidae), with updated distribution records and biogeographical comments for the species from México, including a new record of Loxosceles rufescens (Dufour). ZooKeys, 802, 1‒39. https://doi.org/10.3897/zookeys.802.28445
  73. Valdez-Mondragón, A., Navarro-Rodríguez, C.I., Solís-Catalán, K.P., Cortez-Roldán, M.R. & Juárez-Sánchez, A.R. (2019) Under an integrative taxonomic approach: the description of a new species of the genus Loxosceles (Araneae, Sicariidae) from Mexico City. ZooKeys, 892, 93‒133. https://doi.org/10.3897/zookeys.892.39558
  74. Will, K.W., Mishler, B.D. & Wheeler, Q.D. (2005) The perils of DNA barcoding and the need for integrative taxonomy. Systematic biology, 54 (5), 844‒851. https://doi.org/10.1080/10635150500354878
  75. Wilson, J.D., Hughes, J.M., Raven, R.J., Rix, M.G. & Schmidt, D.J. (2018) Spiny trapdoor spiders (Euoplos) of eastern Australia: broadly sympatric clades are differentiated by burrow architecture and male morphology. Molecular Phylogenetics and Evolution, 122, 157‒165. https://doi.org/10.1016/j.ympev.2018.01.022
  76. Wilson, J.D., Zapata, L.V., Barone, M.L., Cotoras, D.D., Poy, D. & Ramírez, M.J. (2021) Geometric morphometrics reveal sister species in sympatry and a cline in genital morphology in a ghost spider genus. Zoologica Scripta, 50 (4), 485‒499. https://doi.org/10.1111/zsc.12478
  77. Winker, K. (2009) Reuniting phenotype and genotype in biodiversity research. BioScience, 59 (8), 657‒665. https://doi.org/10.1525/bio.2009.59.8.7
  78. World Spider Catalog (2024). World Spider Catalog. Version 20.0. Natural History Museum Bern, online at http://wsc.nmbe.ch (accessed 21 February 2024) https://doi.org/10.24436/2.
  79. Xu, X., Kuntner, M., Bond, J.E., Ono, H., Ho, S.Y., Liu, F., Yu, L. & Li, D. (2020) Molecular species delimitation in the primitively segmented spider genus Heptathela endemic to Japanese islands. Molecular phylogenetics and evolution, 151, 106900.
  80. Yang, Z. (2015) The BPP program for species tree estimation and species delimitation. Current Zoology, 61 (5), 854‒865. https://doi.org/10.1093/czoolo/61.5.854
  81. Yao, Z., Dong, T., Zheng, G., Fu, J. & Li, S. (2016) High endemism at cave entrances: a case study of spiders of the genus Uthina. Scientific Reports, 6, 35757. https://doi.org/10.1038/srep35757
  82. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
  83. Zhang, X.S., Liu, G.M., Feng, Y., Zhang, D.X. & Shi, C.M. (2020) Genetic analysis and ecological niche modeling delimit species boundary of the Przewalski’s scorpion (Scorpiones: Buthidae) in arid Asian inland. BioRxiv, 652024. https://doi.org/10.1101/652024