Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-07-04
Page range: 230-240
Abstract views: 4
PDF downloaded: 0

Ecomorphology of main food processing structures of four ocypodid species: how do they relate to the crabs’ trophic habits?

Ecology Lab; NSSE; National Institute of Education; Nanyang Technological University; 1 Nanyang Walk; Singapore 637616; Republic of Singapore
Ecology Lab; NSSE; National Institute of Education; Nanyang Technological University; 1 Nanyang Walk; Singapore 637616; Republic of Singapore
Crustacea Austruca annulipes Brachyura deposit feeder Gelasimus vocans gastric mill ossicles herbivore Ocypode ceratophthalmus omnivore Petruca panamensis spoon-tipped setae

Abstract

The spoon-tipped (ST) setae coverage and their abundance on the second maxillipeds as well as the morphology of the urocardiac and zygocardiac ossicles from the gastric mills of the four ocypodid species, viz., Austruca annulipes (H. Milne Edwards, 1837), Gelasimus vocans (Linnaeus), 1758, two typical deposit-feeding fiddler crabs, Petruca panamensis (Stimpson, 1859), an atypical herbivorous-cum-‘sediment swallower’ fiddler crab, and Ocypode ceratophthalmus (Pallas, 1772), an omnivorous ghost crab, were described and compared in relation to their respective trophic habits. In the three fiddler crabs, ST setae coverage and abundance generally correlated with their habitats’ sediment grain size characteristics—more ST setae in A. annulipes (‘sandy-habitat crab’) and less in G. vocans (‘muddy-habitat crab’). ST setae were absent in O. ceratophthalmus, which suggests that these setae were not needed for food processing. In the two deposit-feeding fiddler crabs, the median tooth of the urocardiac ossicle had tooth-like transverse ridges to grind against the dentition of the lateral teeth of the zygocardiac ossicles. The median tooth in P. panamensis, however, had transverse ridges that resemble that of a vascular plant eater as well as some posterior tooth-like transverse ridges, typically found in deposit feeders; and twice the number of incisors than the other three ocypodids, for cutting up ingested algal pieces. The omnivorous O. ceratopthalmus had four raised transverse ridges on the round blunt median tooth as well as large premolars and molars on the zygocardiac lateral teeth for maceration of animal tissue. Hence, ST setae abundance as well as the grinding surfaces and dentition of the two gastric mill ossicles are indicative of the habitat adaptations and trophic habits respectively.

 

References

  1. Allardyce, B.J. & Linton, S.M. (2010) Functional morphology of the gastric mills of carnivorous, omnivorous, and herbivorous land crabs. Journal of Morphology, 271, 61–72. https://doi.org/10.1002/jmor.10781
  2. Brösing, A. (2010) Recent developments on the morphology of the brachyuran foregut ossicles and gastric teeth. Zootaxa, 2510 (1), 1–44. https://doi.org/10.11646/zootaxa.2510.1.1
  3. Brösing, A. & Türkay, M. (2011) Gastric teeth of some thoracotreme crabs and their contribution to the brachyuran phylogeny. Journal of Morphology, 272, 1109–1115. https://doi.org/10.1002/jmor.10967
  4. Brösing, A., Richte, S. & Scholtz, G. (2007) Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon. Journal of Zoological Systematics and Evolutionary Research, 45 (1), 20–32. https://doi.org/10.1111/j.1439-0469.2006.00367.x
  5. Carvalho, D.A., Collins, P.A., Lima-Gomes, R., Magalhães, C., Torres, M.V. & Williner, V. (2018) A comparative study of the gastric ossicles of Trichodactylidae crabs (Brachyura: Decapoda) with comments on the role of diet and phylogeny in shaping morphological traits. PeerJ, 6, e5028. https://doi.org/10.7717/peerj.5028
  6. Chiu, L.-H. (2006) The relationship between feeding habit and gastric mill morphology of crab inhabitants on wetland of western Taiwan. MSc Thesis, National Tsing Hua University, Hsinchu. [in Chinese]
  7. Colpo, K.D. & Negreiros-Fransozo, M.L. (2013) Morphological diversity of setae on the second maxilliped of fiddler crabs (Decapoda: Ocypodidae) from the southwestern Atlantic coast. Invertebrate Biology, 132, 38–45. https://doi.org/10.1111/ivb.12004
  8. Crane, J. (1975) Fiddler crabs of the world (Ocypodidae: Genus Uca). Princeton University Press, Princeton, New Jersey, 736 pp.
  9. Davie, P.J.F., Guinot, D. & Ng, P.K.L. (2015) Anatomy and functional morphology of Brachyura. In: Castro, P., Davie, P.J.F., Guinot, D., Schram, F.R. & von Vaupel Klein, J.C. (Eds.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Crustacea. Vol. 9C (71–2). Decapoda: Brachyura (Part 1). Brill, Leiden and Boston, pp. 11–163. https://doi.org/10.1163/9789004190832_004
  10. de la Barra, P., Narvate, M. & Williner, V. (2018) Functional morphology of the gastric mill of the swimming crab Ovalipes trimaculatus (Decapoda: Portunidae). Journal of the Marine Biological Association of the United Kingdom, 98 (7), 1659–1666. https://doi.org/10.1017/S0025315417000844
  11. do Vale, J.G., Barilli, G.H.C., Chahad-Ehlers, S. & Branco, J.O. (2022) Factors influencing the feeding habits of the ghost crab Ocypode quadrata (Fabricius, 1787) on subtropical sandy beaches. Estuarine, Coastal and Shelf Science, 269, 107817. https://doi.org/10.1016/j.ecss.2022.107817
  12. Felgenhauer, B.E. & Abele, L.G. (1985) Feeding structures of two atyid shrimps, with comments on caridean phylogeny. Journal of Crustacean Biology, 5, 397–419. https://doi.org/10.2307/1547911
  13. Felgenhauer, B.E. & Abele, L.G. (1989) Evolution of the foregut in the lower Decapoda. In: Felgenhauer, B.E., Watling, L. & Thistle, A.B. (Eds.), Functional morphology of feeding and grooming in Crustacea. Crustacean Issues. Vol. 6. A.A. Balkema, Rotterdam, pp. 205–219. https://doi.org/10.1201/9781003079354
  14. Griffen, B.D. & Mosblack, H. (2011) Predicting diet and consumption rate differences between and within species using gut ecomorphology. Journal of Animal Ecology, 80, 854–863. https://doi.org/10.1111/j.1365-2656.2011.01832.x
  15. Heeren, T. & Mitchell, B.D. (1997) Morphology of the mouthparts, gastric mill and digestive tract of the giant crab, Pseudocarcinus gigas (Milne Edwards) (Decapoda: Oziidae). Marine and Freshwater Research, 48, 7–18. https://doi.org/10.1071/MF96026
  16. Huespe, A.V., Gómez-Simes, E. & Pastor-de-Ward, C.T. (2008) Gastric mill morphology in the genus Cyrtograpsus (Crustacea: Decapoda: Grapsoidea: Varunidae). Journal of the Marine Biological Association of the United Kingdom, 88 (2), 311–319. https://doi.org/10.1017/S0025315408000520
  17. Huang, J.F., Yang, S.L. & Ng, P.K.L. (1998) Notes on the taxonomy and distribution of two closely related species of ghost crabs, Ocypode sinensis and O. cordimanus (Decapoda, Brachyura, Ocypodidae). Crustaceana, 71 (8), 942–954. https://doi.org/10.1163/156854098X00941
  18. Icely, J.D. & Jones, D.A. (1978) Factors affecting the distribution of the genus Uca (Crustacea: Ocypodidae) on an East African shore. Estuarine and Coastal Marine Science, 6, 315–325. https://doi.org/10.1016/0302-3524(78)90019-1
  19. Icely, J.D. & Nott, J.A. (1992) Digestion and absorption: digestive system and associated organs. In: Harrison, F.W. & Humes, A.G. (Eds.), Microscopic Anatomy of Invertebrates, Vol 10: Decapod crustacea. Wiley-Liss, New York, pp. 147–201.
  20. Kunze, J. & Anderson, D.T. (1979) Functional morphology of the mouthparts and gastric mill in the hermit crabs Clibanarius taeniatus (Milne Edwards), Clibanarius virescens (Krauss), Paguristes squamosus McCulloch and Dardanus setifer (Milne-Edwards) (Anomura: Paguridae). Australian Journal of Marine and Freshwater Research, 30, 683–722. https://doi.org/10.1071/MF9790683
  21. Lim, S.S.L. (2004) A comparative study of some mouthpart adaptations of Uca annulipes (H. Milne Edwards, 1837) and U. vocans (Linnaeus, 1758) (Brachyura, Ocypodidae) in relation to their habitats. Crustaceana, 77 (10), 1245–1251. https://doi.org/10.1163/1568540043166128
  22. Lim, S.S.L. & Goh, S.J.A. (2021) Ecomorphological adaptations of second maxilliped-setation: Insights from three species of fiddler crabs from Panama. Zoological Studies, 60, e48. https://doi.org/10.6620/ZS.2021.60-48
  23. Lim, S.S.L. & Kalpana, S. (2011) Maxilliped-setation adaptations to habitat and sexual dimorphism of feeding claws in Uca perplexa and U. vomeris. Journal of Crustacean Biology, 31 (3), 406–412. https://doi.org/10.1651/10-3416.1
  24. Lim, S.S.L, Yong A.Y.P. & Christy J.H. (2016) Ontogenetic changes in diet and related morphological adaptations in Ocypode gaudichaudii. Invertebrate Biology, 135 (2), 117–126. https://doi.org/10.1111/ivb.12122
  25. Miller, D.C. (1961) The feeding mechanism of fiddler crabs, with ecological considerations of feeding adaptations. Zoologica, 46, 89–101. https://doi.org/10.5962/p.203340
  26. Murniati, D.C., Asakura, A., Nakano, T. & Shimomura, M. (2023) Morphology of the gastric mill teeth in dotillid crabs (Crustacea: Brachyura: Dotillidae) from Indonesia. Journal of Morphology, 284, e21605. https://doi.org/10.1002/jmor.21605
  27. Naderloo, R., Türkay, M. & Chen, J.-L. (2010) Taxonomic revision of the wide-front fiddler crabs of the Uca lactea group (Crustacea: Decapoda: Brachyura: Ocypodidae) in the Indo-West Pacific. Zootaxa, 2500 (1), 1–38. https://doi.org/10.11646/zootaxa.2500.1.1
  28. Ng, P.K.L., Guinot, D. & Davie, P.J.F. (2008) Systema brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology, Supplement 17, 1–286.
  29. Sakai, K.M., Türkay, M. & Yang, S.-L. (2006) Revision of the Helice/Chasmagnathus complex (Crustacea: Decapoda: Brachyura). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 565, 1–76.
  30. Salindeho, I.R. & Johnston, D.J. (2003) Functional morphology of the mouthparts and proventriculus of the rock crab Nectocarcinus tuberculosus (Decapoda: Portunidae). Journal of the Marine Biological Association of the United Kingdom, 83, 821–834. https://doi.org/10.1017/S0025315403007859h
  31. Schaefer, N. (1970) The functional morphology of the fore-gut of three species of decapod crustacea: Cyclograpsus punctatus Milne-Edwards, Diogenes brevirostris Stimpson, and Upogebia africana (Ortmann). Zoologica Africana, 5, 309–326. https://doi.org/10.1080/00445096.1970.11447399
  32. Shih, H.-T. (2015) Uca (Xeruca), a new subgenus for the Taiwanese fiddler crab Uca formosensis Rathbun, 1921 (Crustacea: Decapoda: Ocypodidae), based on morphological and molecular evidence. Zootaxa, 3974 (2), 151–169. https://doi.org/10.11646/zootaxa.3974.2.1
  33. Shih, H.-T., Ng, P.K.L. & Christy, J.H. (2015) Uca (Petruca), a new subgenus for the rock fiddler crab Uca panamensis (Stimpson, 1859) from Central America, with comments on some species of the American broad-fronted subgenera. Zootaxa, 4034 (3), 471–494. https://doi.org/10.11646/zootaxa.4034.3.3
  34. Shih, H.-T., Kamrani, E., Davie, P.J.F. & Liu, M.Y. (2009) Genetic evidence for the recognition of two fiddler crabs, Uca iranica and U. albimana (Crustacea: Brachyura: Ocypodidae), from the northwestern Indian Ocean, with notes on the U. lactea species-complex. Hydrobiologia, 635, 373–382. https://doi.org/10.1007/s10750-009-9930-6
  35. Shih, H.-T., Ng, P.K.L., Davie, P.J.F., Schubart, C.D., Türkay, M., Naderloo, R., Jones, D. & Liu, M.-Y. (2016) Systematics of the family Ocypodidae Rafineaque, 1815 (Crustacea: Brachyura), based on phylogenetic relationships, with a reorganization of subfamily rankings and a review of the taxonomic status of Uca Leach, 1814, sensu lato and its subgenera. Raffles Bulletin of Zoology, 64, 139–175.
  36. Skilleter, G.A. & Anderson, D.T. (1986) Functional morphology of the chelipeds, mouthparts and gastric mill of Ozius truncatus (Milne Edwads) (Xanthidae) and Leptograpsus variegatus (Fabricius) (Grapsidae) (Brachyura). Australian Journal of Marine and Freshwater Research, 37, 67–79. https://doi.org/10.1071/MF9860067
  37. Takeda, S. & Murai, M. (2003) Morphological and behavioural adaptations to the rocky substrate by the fiddler crab Uca panamensis (Stimpson, 1859): preference for feeding substratum and feeding mechanism. Journal of Experimental Marine Biology and Ecology, 287, 179–191. https://doi.org/10.1016/S0022-0981(02)00550-6
  38. Warner, G.F. (1977) The biology of crabs. Elek Science, London, 202 pp.
  39. Wolcott, D.L. & O’ Connor, N. (1992) Herbivory in crabs: adaptations and ecological considerations. American Zoologist, 32, 370–381. https://doi.org/10.1093/icb/32.3.370
  40. Yamaguchi, T. & Ogata, R. (2000) Studies of the first and second maxillipeds of the fiddler crab, Uca lactea. Crustacean Research, 29, 133–142. https://doi.org/10.18353/crustacea.29.0_133
  41. Yang, S.-L. (1986) The diagnostic value of gastric mill’s construction as taxonomic character on the classification of crabs (Brachyura: Crustacea). Acta Zootaxonomica Sinica, 11 (2), 151–159. [in Chinese]
  42. Yong, A.Y.P. & Lim, S.S.L. (2009) The potential of Ocypode ceratophthalmus (Pallas, 1772) as a bioindicator of human disturbance on Singapore beaches. Crustaceana, 82 (12), 1579–1597. https://doi.org/10.1163/001121609X12530988607470