Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-10
Page range: 501-532
Abstract views: 165
PDF downloaded: 111

A review of the genus Eugaster Serville, 1838 (Orthoptera, Tettigoniidae, Hetrodinae): a multifaceted approach

Institute of Earth Systems; University of Malta
Department of Agriculture; Food & Forest Sciences; University of Palermo (retd)
Department of Geosciences; Faculty of Science; University of Malta
Institute of Earth Systems; University of Malta
Institute of Earth Systems; University of Malta
Orthoptera Morocco Algeria Tunisia morphometrics DNA analysis microscopy stridulatory file feature extraction

Abstract

Overall coloration, size and thoracic morphology have formed the basis for taxonomic differentiation of taxa within the genus Eugaster at specific or subspecific levels over the years. The present study employs a range of methods to examine the morphology of 58 specimens (18♂♂ and 40♀♀) from Morocco, Algeria and Tunisia, collected from altitudes varying between 10 and 1795 metres AMSL. Moroccan sampling sites include localities on both the north and south of the High Atlas and from either side of the Middle Atlas, i.e., the Anti-Atlas, Western Meseta and High Plateau. The various techniques involve the characterisation of the five key colour forms and an investigation to examine links between colour form and geographical location and altitude, biometric analysis comprising selected variables, thoracic structure examination through feature extraction and edge detection, microscopy to examine male stridulatory files, an examination of the male genital sclerite structure for the presence of titillators, as well as molecular and phylogenetic analysis. Statistical tests are performed for results pertaining to biometrics, thoracic skeletisation, and the number of pegs on stridulatory organs. From results obtained, this study finds no basis to support the notion of the various taxa described in the past being assigned the rank of species and considers these to be infraspecific variants or forms. Consequently, the present authors propose to synonymise Eugaster guyoni (Serville, 1838) with Eugaster spinulosa (Johannson, 1763), resulting in the genus Eugaster being represented in North Africa by a unique but highly variable taxon, in terms of coloration, size and thoracic morphology.

 

References

  1. Bartolo, A.G., Zammit, G., Peters, A.F. & Küpper, F.C. (2020) The current state of DNA barcoding of macroalgae in the Mediterranean Sea: presently lacking but urgently required. Botanica Marina, 63 (3), 253–272. https://doi.org/10.1515/bot-2019-0041
  2. Bleton, A. (1942) Notes sur la biologie, au Maroc, d’Eugaster spinulosus Joh. (Orthoptère Tettigoniidae). Bulletin de la Société des sciences naturelles [et physiques] du Maroc, 22, 89–95.
  3. Bleton, A. (1942) Description de deux espèces nouvelles marocaines d’Eugaster (Orthoptère Tettigoniidae). Bulletin de la Société des sciences naturelles [et physiques] du Maroc, 22, 96–98.
  4. Chopard, L. (1943) Orthoptèroides de l’Afrique du Nord.–Faune de l’Empire Français 1. Librarie Larose, Paris, 450 pp.
  5. Clusella-Trullas, S., van Wyk, J.H. & Spotila, J.R. (2007) Thermal melanism in ectotherms. Journal of Thermal Biology, 32 (5), 235–245. https://doi.org/10.1016/j.jtherbio.2007.01.013
  6. Clusella‐Trullas, S., Terblanche, J.S., Blackburn, T.M. & Chown, S.L. (2008) Testing the thermal melanism hypothesis: a macrophysiological approach. Functional Ecology, 22 (2), 232–238. https://doi.org/10.1111/j.1365-2435.2007.01377.x
  7. Cigliano, M.M., Braun, H. Eades, D.C. & Otte. D. (2023) Orthoptera Species File. Version 5.0/5.0. Available from: http://Orthoptera.SpeciesFile.org (accessed 20 September 2023)
  8. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  9. Dendi, D., Ajong, S., Amori, G. & Luiselli, L. (2021) Decline of the Commercially Attractive White Morph in Goliath Beetle Polymorphic Populations. Diversity, 13, 1–5. https://doi.org/10.3390/d13080388
  10. Eberhard, W.G. & Lehmann, G.U.C. (2019) Demonstrating sexual selection by cryptic female choice on male genitalia: What is enough? Evolution, 73 (12), 2415–2435. https://doi.org/10.1111/evo.13863
  11. Frizon de Lamotte, D., Saint-Bezar, B., Bracène, R. & Mercier, E. (2000) The two main steps of the Atlas building and geodynamics of the western Mediterranean. Tectonics, 19, 740–761. https://doi.org/10.1029/2000TC900003
  12. Frizon de Lamotte, D., Zizi, M., Missenard, Y., Hafid, M., El Azzouzi, M., Maury, R., Charrière, A., Taki, Z., Benammi, M. & Michard, A. (2008) The Atlas System. In: Michard, A., Saddiqi, O., Chalouan, A. & Lamotte, D.F. (Eds.), Continental Evolution: The Geology of Morocco. Lectures Notes in Earth Sciences. Vol. 116. Springer Verlag, Berlin, pp. 133–202. https://doi.org/10.1007/978-3-540-77076-3_4
  13. Geiger, M., Koblmüller, S., Assandri, G., Chovanec, A., Ekrem, T., Fischer, I., Galimberti, A., Grabowski, M., Haring, E., Hausmann, A. & Hendrich, L. (2021) Coverage and quality of DNA barcode references for Central and Northern European Odonata. PeerJ, 9, e11192. https://doi.org/10.7717/peerj.11192
  14. Geller, J., Meyer, C., Parker, M. & Hawk, H. (2013) Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Molecular Ecology Resources, 13, 851–861. https://doi.org/10.1111/1755-0998.12138
  15. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59 (3), 307–321. https://doi.org/10.1093/sysbio/syq010
  16. Hawlitschek, O., Morinière, J., Lehmann, G.U.C., Lehmann, A.W., Kropf, M., Dunz, A., Glaw, F., Detcharoen, M., Schmidt, S., Hausmann, A. & Szucsich, N.U., (2017) DNA barcoding of crickets, katydids and grasshoppers (Orthoptera) from Central Europe with focus on Austria, Germany and Switzerland. Molecular Ecology Resources, 17 (5), 1037–1053. https://doi.org/10.1111/1755-0998.12638
  17. Huey, R.B. & Kingsolver, J.G. (1989) Evolution of thermal sensitivity of ectotherm performance. Trends in Ecology & Evolution, 4 (5), 131–135. https://doi.org/10.1016/0169-5347(89)90211-5
  18. Huey, R.B. & Kingsolver, J.G. (1993) Evolution of Resistance to High Temperature in Ectotherms. The American Naturalist, 142, S21–S46. https://doi.org/10.1086/285521
  19. Hustert, R., Lodde, E. & Gnatzy, W. (1999) Mechanosensory pegs constitute stridulatory files in grasshoppers. Journal of comparative neurology, 410 (3), 444–456. https://doi.org/10.1002/(SICI)1096-9861(19990802)410:3%3C444::AID-CNE7%3E3.0.CO;2-E
  20. Jolivet, L., Frizon de Lamotte, D., Mascle, A. & Séranne, M. (1999) The Mediterranean Basins: Tertiary Extension within the Alpine Orogen - an introduction. Geological Society, London, Special Publications, 156 (1), 1–14. https://doi.org/10.1144/GSL.SP.1999.156.01.02
  21. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  22. Lemoine, F., Correia, D., Lefort, V., Doppelt-Azeroual, O., Mareuil, F., Cohen-Boulakia, S. & Gascuel, O. (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Research, 7, 260–265. https://doi.org/10.1093/nar/gkz303
  23. Lucas, P.H. (1861) Note sur le genre Eugaster. Orthoptère de la famille des locustiens, qui habite dans le nord de l’Afrique. Annales de la Société Entomologique de France, 1, 213–218.
  24. Michard, A., Saddiqi, O., Chalouan, A. & Frizon de Lamotte, D. (Eds.) (2008) Continental Evolution: The Geology of Morocco. Lecture Notes in Earth Sciences. Vol. 116. Springer Verlag, Berlin, 424 pp. https://doi.org/10.1007/978-3-540-77076-3
  25. NOAA National Centers for Environmental Information (2022) ETOPO 2022 15 Arc-Second Global Relief Model. https://doi.org/10.25921/fd45-gt74
  26. O’Brien, S.J. & Mayr, E. (1991) Bureaucratic mischief: recognizing endangered species and subspecies. Science, 251, 1187–1188. https://doi.org/10.1126/science.251.4998.1187
  27. Rodrigues, Y. & Beldade, P. (2020) Thermal plasticity in insects’ response to climate change and to multifactorial environments. Frontiers in Ecology and Evolution, 8, 271. https://doi.org/10.3389/fevo.2020.00271
  28. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A. Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MRBAYES 3.2: Efficient Bayesian phylogenetic inference and model selection across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  29. Samoilov, M.S., Price, G. & Arkin, A.P. (2006) From fluctuations to phenotypes: the physiology of noise. Science’s STKE: signal transduction knowledge environment, 366, re17. https://doi.org/10.1126/stke.3662006re17
  30. Serville, J.G. (1838) Histoire naturelle des insectes. Orthoptères. Librairie encylopédique de Roret, Paris, 463 pp.
  31. Sibilia, C.D., Brosko, K.A., Hickling, C.J., Thompson, L.M., Grayson, K.L. & Olson, J.R. (2018) Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). Journal of Insect Science, 18 (4), 4. https://doi.org/10.1093/jisesa/iey066
  32. Simpson, S.J., Sword, G.A. & Lo, N. (2011) Polyphenism in insects. Current Biology, 21 (18), R738–749. https://doi.org/10.1016/j.cub.2011.06.006
  33. University of Sydney (2010) Museums Collections. Available from: https://web.archive.org/web/20101109132540/ and http://sydney.edu.au/museums/collections/macleay/invertebrates (accessed 20 December 2023)
  34. Weidner. H. (1955) Die Hetrodinae (Orthoptera, Saltatoria). Mitteilungen des Hamburgischen Zoologischen Museums und Instituts, 53, 110–166.
  35. Xiberras, S. & Ducaud, P. (2020) Les Sauterelles-feuilles de Guyane. Mimétisme, Musée des Confluences, Lyon, 360 pp.
  36. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214. https://doi.org/10.1089/10665270050081478
  37. Zhao, Y., Wang, H., Huang, H., & Zhou, Z. (2022) A DNA barcode library for katydids, cave crickets, and leaf-rolling crickets (Tettigoniidae, Rhaphidophoridae and Gryllacrididae) from Zhejiang Province, China. ZooKeys, 1123, 147. https://doi.org/10.3897/zookeys.1123.86704
  38. Zverev, V., Kozlov, M.V., Forsman, A. & Zvereva, E.L. (2018) Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. Journal of Thermal Biology, 74, 100–109. https://doi.org/10.1016/j.jtherbio.2018.03.019