Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-11
Page range: 57-78
Abstract views: 84
PDF downloaded: 60

Expanded range of Nasutitermes callimorphus Mathews, 1977 (Isoptera: Termitidae: Nasutitermitinae), comparison with N. corniger (Motschulsky, 1855) and N. ephratae (Holmgren, 1910), and synonymy of N. dasyopsis Thorne, 1989 into N. nigriceps (Haldeman, 1854)

Fort Lauderdale Research and Education Center; University of Florida; Institute of Food and Agricultural Sciences; 3205 College Avenue; Davie; Florida; 33314; USA
Behavioral and Evolutionary Ecology; CP 160/12; Université Libre de Bruxelles; Av. F.D. Roosevelt 50; B - 1050 Brussels; Belgium
Department of Entomology and Plant Pathology; 217 Plant Science Bldg.; University of Arkansas; Fayetteville; AR 72701; USA
BASF Corporation; 26 Davis Drive; P.O. Box 13528; Research Triangle Park; NC 27709; USA
Behavioral and Evolutionary Ecology; CP 160/12; Université Libre de Bruxelles; Av. F.D. Roosevelt 50; B - 1050 Brussels; Belgium
Isoptera taxonomy molecular genetics Neotropics Nasutitermes corniger N. dasyopsis N. ephratae N. nigriceps

Abstract

The imago of N. callimorphus is described for the first time. Nasutitermes callimorphus occurs from Mexico to Paraguay. Nasutitermes callimorphus is smaller in all measurements but generally resembles its widely distributed sympatric congeners, N. corniger (Motschulsky, 1855) and N. ephratae (Holmgren, 1910). Molecular phylogenetic analysis of a portion of the mitochondrial 16S rRNA gene and the COII mtDNA marker revealed that N. callimorphus forms a distinct clade using both maximum parsimony and maximum likelihood analysis. Unlike N. corniger and N. ephratae, N. callimorphus does not build epigeal or arboreal carton nests. We further regard N. dasyopsis Thorne, 1989 as a junior synonym of N. nigriceps (Haldeman, 1854).

 

References

  1. Ahmad, M. (1950) The phylogeny of termite genera based on imago-worker mandibles. Bulletin of the American Museum of Natural History, 95 (2), 37–86.
  2. Alfaro, M.E., Zoller, S. & Lutzoni, F. (2003) Bayes or Bootstrap? A simulation study comparing the performance of Bayesian Markov Chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Molecular Biology and Evolution, 20, 255–266. https://doi.org/10.1093/molbev/msg028
  3. Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J. & Jetz, W. (2018). A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5 (1), 1–15. https://doi.org/10.1038/sdata.2018.40
  4. Araújo, V.F.P., Silva, M.P. & Vasconcellos, A. (2015) Soil-sampled termites in two contrasting ecosystems within the semiarid domain in northeastern Brazil: abundance, biomass, and seasonal influences. Sociobiology, 62, 70–75. https://doi.org/10.13102/sociobiology.v62i1.70-75
  5. Bandeira, A.G., Gomes, J.I., Lisboa, P.L.B. & Souza, P.C.S. (1989) Insetos pragas de madeiras de edificações em Belém-Pará. Boletim de Pesquisa. No. 101. EMBRAPA-CPATU, Belém, 25 pp.
  6. Bourguignon, T., Leponce, M. & Roisin, Y. (2011) Beta-diversity of termite assemblages among primary French Guiana rain forests. Biotropica, 43, 473–479. https://doi.org/10.1111/j.1744-7429.2010.00729.x
  7. Casalla Daza, R. & Korb, J. (2019) Phylogenetic community structure and niche differentiation in termites of the tropical dry forests of Colombia. Insects, 10, 103. https://doi.org/10.3390/insects10040103
  8. Cipriani, B.V., Lima, B.M., Jesus, F.P. & Garlet, J. (2019) Subterranean termites associated to forest plantations in Southern Amazon, Brazil. Ciência Florestal, 29, 1776–1781. https://doi.org/10.5902/1980509831751
  9. Constantino, R. (2002) The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology, 126, 355–365. https://doi.org/10.1046/j.1439-0418.2002.00670.x
  10. Constantino, R. (2020) Termite Database. Brasília, University of Brasília. Available from: https://termitologia.net/ (accessed 16 May 2024)
  11. Constantino, R. & Cancello, E.M. (1993) Cupins (Insecta, Isoptera) da Amazônia Brasileira: distribuição geográfica e esforço de coleta. Revista Brasileira de Biologia, 52, 401–413.
  12. Constantino, R. & Cancello, E.M. (1999) Updates and correction to Mathews’s “Termites from Mato Grosso” (Isoptera). Sociobiology, 33, 195–198.
  13. Couto, A.A.V.O., Montes, M.A., Figueirêdo, R.E.C.R. & Vasconcellos, A. (2019) Sharing of termites (Blattodea: Isoptera) between sugarcane matrices and Atlantic Forest fragments in Northeast Brazil. Revista Brasileira de Entomologia, 63, 108–111. https://doi.org/10.1016/j.rbe.2019.02.001
  14. Cuezzo, C., Carrijo, T.F. & Cancello, E.M. (2015) Transfer of two species from Nasutitermes Dudley to Cortaritermes Mathews (Isoptera: Termitidae: Nasutitermitinae). Austral Entomology, 54, 172–179. https://doi.org/10.1111/aen.12107
  15. Dambros, C.S., Mendonça, D.R.M., Rebelo, T.G. & Morais, J.W. (2012) Termite species list in a terra firme and ghost forest associated with a hydroelectric plant in Presidente Figueiredo, Amazonas, Brazil. Check List, 8, 718–721. https://doi.org/10.15560/8.4.718
  16. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  17. Duquesne, E. & Fournier, D. (2024) Connectivity and climate change drive the global distribution of highly invasive termites. NeoBiota, 92, 281–314. https://doi.org/10.3897/neobiota.92.115411
  18. Eloi, I., Oliveira, M.H. & Bezerra-Gusmão, M.A. (2020) Carcass consumption by Nasutitermes callimorphus (Blattodea: Isoptera) in highland forests from Brazil. Journal of Threatened Taxa, 12, 16187–16189. https://doi.org/10.11609/jott.5510.12.9.16187-16189
  19. Ensaf, A. & Eggleton, P. (2004) The identification of twenty species of the genus Nasutitermes (Isoptera: Termitidae) from French Guiana and the new morphological characters. Mitteilungen der Schweizerischen Entomologischen Gesellschaft, 77, 311–332.
  20. Ferreira, R.R., Lucena, E.F., Koroiva, R., Azevedo, R.A., Haugaasen, T., Peres, C.A., Hawes, J.E. & Vasconcellos, A. (2023) Amazonian forest termites: a species checklist from the State of Acre, Brazil. Biota Neotropica, 23, e20231551. https://doi.org/10.1590/1676-0611-bn-2023-1551
  21. Fick, S.E. & Hijmans, R.J. (2017) WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37 (12), 4302–4315. https://doi.org/10.1002/joc.5086
  22. Fontes, L.R. (1998) Novos aditamentos ao “Catálogo dos Isoptera do Novo Mundo,” e uma filogenia para os gêneros neotropicais de Nasutitermitinae. In: Fontes, L.R. & Berti Filho, E. (Eds.), Cupins: o desafio do conhecimento. Fundação de Estudos Agrários Luiz de Queiroz, São Paulo, pp. 309–412.
  23. Garrity, S.D. & Levings, S.C. (1985) Interspecific interactions and scarcity of a tropical limpet. Journal of Molluscan Studies, 51, 297–308.
  24. Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321. https://doi.org/10.1093/sysbio/syq010
  25. Harris, W.V. (1961) Termites: Their Recognition and Control. Longmans, Green and Co., London, 187 pp.
  26. Hartke, T.R. & Rosengaus, R.B. (2011) Heterospecific pairing and hybridization between Nasutitermes corniger and N. ephratae. Naturwissenschaften, 98, 745–753. https://doi.org/10.1007/s00114-011-0823-y
  27. Hillis, D.M. & Bull, J.J. (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42 (2), 182–192. https://doi.org/10.1093/sysbio/42.2.182
  28. Holmgren, N. (1906) Studien über südamerikanische Termiten. Zoologische Jahrbücher, Abteilung für Systematik, Ökologie und Geographie der Tiere, 23, 521–676.
  29. Holmgren, N. (1910) Versuch einer Monographie der amerikanischen Eutermes-Arten. Mitteilungen aus dem Naturhistorischen Museum (Hamburg), 27, 171–325.
  30. Huelsenbeck, J.P. & Ronquist, F. (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754
  31. Inward, D.J., Vogler, A.P. & Eggleton, P. (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44, 953–967. https://doi.org/10.1016/j.ympev.2007.05.014
  32. Kambhampati, S. & Smith P.T. (1995) PCR primers for the amplification of four insect mitochondrial gene fragments. Insect Molecular Biology, 4, 233–236. https://doi.org/10.1111/j.1365-2583.1995.tb00028.x
  33. Krishna, K., Grimaldi, D.A., Krishna, V. & Engel, M.S. (2013) Treatise on the Isoptera of the world: Volume 4, Termitidae (part two). Bulletin of the American Museum of Natural History, 377, 1499–1900. https://doi.org/10.1206/377.5
  34. Larget, B. & Simon, D.L. (1999) Markov chain Monte Carlo Algorithms for the Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution, 16, 750–759. https://doi.org/10.1093/oxfordjournals.molbev.a026160
  35. Letunic, I. & Bork, P. (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293–W296. https://doi.org/10.1093/nar/gkab301
  36. Light, S.F. (1933) Termites of western Mexico. University of California Publications in Entomology, 6, 79–164.
  37. Mathews, A.G.A. (1977) Studies on Termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de Janeiro, 267 pp.
  38. Mertl, A.L., Traniello, J.F.A., Ryder Wilkie, K. & Constantino, R. (2012) Associations of two ecologically significant social insect taxa in the litter of an Amazonian rainforest: is there a relationship between ant and termite species richness? Psyche: A Journal of Entomology, 2012, 1–12. https://doi.org/10.1155/2012/312054
  39. Mill, A.E. (1983) Observations on Brazilian termite alate swarms and some structures used in the dispersal of reproductives (Isoptera: Termitidae). Journal of Natural History, 17, 309–320. https://doi.org/10.1080/00222938300770231
  40. Miura, T., Roisin, Y. & Matsumoto, T. (2000) Molecular phylogeny and biogeography of the nasute termite genus Nasutitermes (Isoptera: Termitidae) in the pacific tropics. Molecular Phylogenetics and Evolution, 17 (1), 1–10. https://doi.org/10.1006/mpev.2000.0790
  41. Nickle, D.A. & Collins, M.S. (1992) The termites of Panama (Isoptera). In: Quintero, D. & Aiello, A. (Eds.), Insects of Panama and Mesoamerica: selected studies. Oxford University Press, Oxford, pp. 208–241 https://doi.org/10.1093/oso/9780198540182.003.0013
  42. Posada, D. & Buckley, T.R. (2004) Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53 (5), 793–808. https://doi.org/10.1080/10635150490522304
  43. R Core Team. (2021) R: a language and environment for statistical computing. Computer software. R Foundation for Statistical Computing. Available from: https://www.R-project.org/ (accessed 12 August 2024)
  44. Rodríguez, F.J., Oliver, J.L., Marin, A. & Medina, J.R. (1990) The general stochastic model of nucleotide substitution. Journal of Theoretical Biology, 142, 485–501. https://doi.org/10.1016/S0022-5193(05)80104-3
  45. Roisin, Y., Dejean, A., Corbara, B., Orivel, J., Samaniego, M. & Leponce, M. (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia, 149, 301–311. https://doi.org/10.1007/s00442-006-0449-5
  46. Roy, V., Constantino, R., Chassany, V., Giusti-Miller, S., Diouf, M., Mora, P. & Harry, M. (2014) Species delimitation and phylogeny in the genus Nasutitermes (Termitidae: Nasutitermitinae) in French Guiana. Molecular Ecology, 23, 902–920. https://doi.org/10.1111/mec.12641
  47. Santos, A.F., Carrijo, T.F., Cancello, E.M. & Morales-Corrêa e Castro, A.C. (2017) Phylogeography of Nasutitermes corniger (Termitidae: Nasutitermitinae) in the Neotropical Region. BMC Evolutionary Biology, 17, 230. https://doi.org/10.1186/s12862-017-1079-8
  48. Santos, A.F., Cancello, E.M. & Morales, A.C. (2022) Phylogeography of Nasutitermes ephratae (Termitidae: Nasutitermitinae) in neotropical region. Scientific Reports, 12, 11656. https://doi.org/10.1038/s41598-022-15407-z
  49. Scheffrahn, R.H. (2019) UF termite database. University of Florida termite collection. Available from: https://www.termitediversity.org/ (accessed 16 May 2024)
  50. Scheffrahn, R.H., Křeček, J., Szalanski, A.L. & Austin, J.W. (2005) Synonymy of the neotropical arboreal termites, Nasutitermes corniger and N. costalis (Isoptera: Termitidae), with evidence from morphology, genetics, and biogeography. Annals of the Entomological Society of America, 98, 273–281. https://doi.org/10.1603/0013-8746(2005)098[0273:SONATN]2.0.CO;2
  51. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H. & Flook P. (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701. https://doi.org/10.1093/aesa/87.6.651
  52. Szalanski, A.L., Sikes, D.S., Bischof, R. & Fritz, M. (2000) Population genetics and phylogenetics of the endangered American burying beetle, Nicrophorus americanus (Coleoptera: Silphidae). Annals of the Entomological Society of America, 93, 589–594. https://doi.org/10.1603/0013-8746(2000)093[0589:PGAPOT]2.0.CO;2
  53. Thorne, B.L. & Levings S.C. (1989) A new species of Nasutitermes (Isoptera: Termitidae) from Panama. Journal of the Kansas Entomological Society, 62, 342–347.
  54. Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. (2009) BIOMOD–A platform for ensemble forecasting of species distributions. Ecography, 32 (3), 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x