Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-19
Page range: 209-221
Abstract views: 150
PDF downloaded: 11

Earthworms (Oligochaeta: Lumbricidae) of Georgia, Caucasus: distribution and biodiversity

Institute of Zoology; Ilia State University; 0162; K. Cholokashvili Ave.; 3/5; Tbilisi; Georgia
Institute of Zoology; Ilia State University; 0162; K. Cholokashvili Ave.; 3/5; Tbilisi; Georgia
National Environment Agency of Ministry of Environmental Protection and Agriculture of Georgia; 0112; D. Aghmashenebeli Ave.; 150; Tbilisi; Georgia
Institute of Zoology; Ilia State University; 0162; K. Cholokashvili Ave.; 3/5; Tbilisi; Georgia
Institute of Zoology; Ilia State University; 0162; K. Cholokashvili Ave.; 3/5; Tbilisi; Georgia
Institute of Zoology; Ilia State University; 0162; K. Cholokashvili Ave.; 3/5; Tbilisi; Georgia
Annelida Natural reserves endemism similarity density

Abstract

The article attempts to present the species composition and distribution of earthworms in Georgia—one of the central countries of the Caucasus. According to long-term research, about 90 species of earthworms belong to 13 genera. They have been identified throughout Georgia, and most of them (47 species) were described in the nature reserves of eastern, western and central Georgia. 46 species of earthworms (51,7% of Caucasian Lumbricidae) found in Georgia have been identified as endemic species of the Caucasus. The similarities of earthworms’ dominant species in the various ecosystems within the Algeti National Park are discussed in the paper.

The high level of Caucasus fauna endemism is mainly caused by the unique natural and climatic conditions of the Caucasus, which is clearly expressed in the species composition of earthworms. Among the genera which compose the Caucasian Lumbricidae fauna, the genus Dendrobaena has the most species diversity with 22 species (24.71%), followed by Eisenia (9 species, or 10%). The six genera Bimastos, Eiseniella, Imetescolex, Lumbricus, Octodrilus, and Omodeoia are represented by a single species.

 

 

References

  1. Bondyrev, I.V., Davitashvili, Z.V. & Singh, V.P. (2015) Deforestation and Reforestation. In: The Geography of Georgia. World Regional Geography Book Series. Springer, Cham, pp. 121–131. https://doi.org/10.1007/978-3-319-05413-1_11
  2. Bakhtadze, N.G., Bakhtadze, G.I. & Kvavadze, E.S. (2008) The chromosome numbers of Georgian earthworms (Oligochaeta: Lumbricidae). Comparative Cytogenetics, 2 (1), 79–83. [https://www.zin.ru/journals/compcyt/pdf/2/Bakhtadze.pdf]
  3. Guerra, C.A., Sikorski, J., Chatzinotas, A., Cesarz, S., Beaumelle, L., Rillig, M.C., Maestre, F.T., Buscot, F., Overmann, J., Patoine, G., Phillips, H.R., Winter, M., Wubet, T., Küsel, K., Bardgett, R.D., Cameron, E.K., Cowan, D., Grebenc, T., Marín, C., Orgiazzi, A., Singh, B.K., Wall, D.H. & Eisenhauer, N. (2020) Blind spots in global soil biodiversity and ecosystem function research. Nature Communications, 11 (1), 1–13. https://doi.org/10.1038/s41467-020-17688-2
  4. Bukhnikashvili, A. & Beltadze, N. (Eds.) (2012) The Faunal List of Adjara. Ilia State University, Tbilisi, 263 pp. [in Georgian, with an abstract in English, ISBN 978-9941-0-3975-1]
  5. Csuzdi, C., Chang, C.-H. Pavlícek, T., Szederjesi, T., Esopi, D. & Szlávecz, K. (2017) Molecular phylogeny and systematics of native North American lumbricid earthworms (Clitellata: Megadrili). PLoS ONE, 12 (8), e0181504. https://doi.org/10.1371/journal.pone.0181504
  6. Darwin, C. (1890) The formation of vegetable mould through the action of worms. J. Murray, London, 365 pp. https://doi.org/10.5962/bhl.title.12028
  7. Guerra, C.A., Heintz-Buschart, A., Sikorski, J., Chatzinotas, A., Guerrero-Ramírez, N., Cesarz, S., Beaumelle, L., Rillig, M.C., Maestre F.T., Delgado-Baquerizo, M., Buscot , F., Overmann, J., Patoine, G., Phillips, H.R.P., Winter M., Wubet, T., Küsel, K. & Ibánez, J.J. (2020) State of knowledge of soil biodiversity—Status, challenges and potentialities. Report 2020. Food and Agriculture Organization of the United Nations, Rome, 618 pp. https://doi.org/10.4060/cb1928en
  8. Kokhia, M.S. & Golovatch, S.I. (2020) Diversity and distribution of the millipedes (Diplopoda) of Georgia, Caucasus. Zookeys, 930 (4), 199–219. https://doi.org/10.3897/zookeys.930.47490
  9. Kokhia, M., Tskitishvili, E. & Gigolashvili, M. (2015) Biodiversity of Nematofauna of Earthworm Casts. International Journal of Agriculture Innovations and Research, 4 (1), 191–196. Available from: https://ijair.org/administrator/components/com_jresearch/files/publications/IJAIR_1498_Final.pdf (accessed 27 August 2024)
  10. Kvavadze, E.S. (1985) The Earthworms (Lumbricidae) of the Caucasus. Metsniereba, Tbilisi, 239 pp. [in Russian, English summary]
  11. Kvavadze, E. (1999) Caucasian Earthworms (Lumbricidae) (Sistematics, Faunistic, Zoogeography Ecology, Phylogeny). Theses of the doctoral dissertation, Institute of Zoology, Tbilisi, 313 pp. [in Georgian]
  12. Lavelle, P., Spain, A.V., Blouin, M., Brown, G.G., Decaens, T., Grimaldi, M., Jiménez, J.J., McKey, D., Mathieu, J., Velasquez, E. & Zangerlé, A. (2016) Ecosystem engineers in a self-organized soil: A review of concepts and future research questions. Soil Science, 181 (3/4), 91–109. https://doi.org/10.1097/SS.0000000000000155
  13. Misirlioğlu, M., Valchovski, M. & Stojanovič, M. (2018) Review of the earthworm biodiversity of Turkey and its neighbouring countries (Clitellata, Megadrili). Opuscula Zoologica, Budapest, 49 (2), 141–149. https://doi.org/10.18348/opzool.2018.2.141
  14. Natural History Museum (2024) Natural History Museum (London) Collection Specimens. Occurrence dataset. Accessed via GBIF.org. Available from: https://www.gbif.org/occurrence/1056043728 (accessed 12 August 2024) https://doi.org/10.5519/qd.hj3arf8k
  15. Omodeo, P. & Rota, E. (1989) Earthworms of Turkey. Bollettino di Zoologia, 56 (2), 167–198. https://doi.org/10.1080/11250008909355639
  16. Omodeo, P. & Rota, E. (1999) Biogeographical patterns of terricolous oligochaetes in Turkey (Annelida: Clitellata: Lumbricidae, Enchytraeidae). Bio-geographia, 20, 61–79. https://doi.org/10.21426/B6110025
  17. Johnson, N., Scheu, S., Ramirez, K., Lemanceau, P., Eggleton, P., Jones, A., Moreira, F., Barrios, E., De Deyn, G., Briones, M., Kaneko, N., Kandeler, E., Wall, D., Six, J., Fierer, N., Jeffery, S., Lavelle, P., Putten, W., Singh, B., Miko, L., Hedlund, K., Orgiazzi, A., Chotte, J., rdgett, R., Behan-Pelletier, V., Fraser, T. & Montanarella, L. (Eds.) (2016) Global Soil Biodiversity Atlas. European Commision, Joint Research Centre, Luxembourg, 176 pp. [https://data.europa.eu/doi/10.2788/2613]
  18. Pavlíček, T., Csuzdi, C. & Nevo, E. (2006) Biodiversity of Earthworms in the Levant. Israel Journal of Ecology and Evolution, 52 (3–4), 461–466. https://doi.org/10.1560/IJEE_52_3-4_461
  19. Reynolds, J.W. & Wetzel, M.J. (2023) Nomenclatura Oligochaetologica—A catalogue of names, descriptions and type specimens of the Oligochaeta. Editio Secunda. Available from: https://nomenclatura-oligochaetologica.inhs.illinois.edu/ (accessed 27 August 2024)
  20. Soliveres, S., van der Plas, F., Manning, P., Prati, D., Gossner, M.M., Renner, S.C., Alt, F., Arndt, H., Baumgartner, V., Binkenstein, J., Birkhofer, K., Blaser, S., Bluthgen, N., Boch, S., Bohm, S., Borschig, C., Buscot, F., Diekotter, T., Heinze, J., Holzel, N., Jung, K., Klaus, V.H., Kleinebecker, T., Klemmer, S., Krauss, J., Lange, M., Morris, E.K., Muller, J., Oelmann, Y., Overmann, J., Pasalic, E., Rillig, M.C., Schaefer, H.M., Schloter, M., Schmitt, B., Schoning, I., Schrumpf, M., Sikorski, J., Socher, S.A., Solly, E.F., Sonnemann, I., Sorkau, E., Steckel, J., Steffan-Dewenter, I., Stempfhuber, B., Tschapka, M., Turke, M., Venter, P.C., Weiner, C.N., Weisser, W.W., Werner, M., Westphal, C., Wilcke, W., Wolters, V., Wubet, T., Wurst, S., Fischer, M. & Allan, E. (2016) Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature, 536, 456–459. https://doi.org/10.1038/nature19092
  21. Szederjesi, T., Marchán, D.F., Csuzdi, C., Sarbu, S.M., Pavlíček, T., Krízsik, V., Martin, P. & Domínguez, J. (2023) Three in one: molecular phylogeny of the genus Helodrilus (Crassiclitellata: Lumbricidae) with a description of two new genera and two new species. Zoological Journal of the Linnean Society, 197 (4), 899–908. https://doi.org/10.1093/zoolinnean/zlac069
  22. Thakur, M.P., Reich, P.B., Hobbie, S.E., Stefanski, A., Rich, R. Rice, K.E., Eddy, W.C & Eisenhauer, N. (2018) Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change, 8, 75–78. https://doi.org/10.1038/s41558-017-0032-6
  23. Tsiklauri, K. (2006) Ecological characteristics of soil mesofauna of Algeti National Park. Theses of the doctoral dissertation, Institute of Zoology, Tbilisi. [in Georgian]
  24. Veresoglou, S.D., Halley, J.M. & Rillig, M.C. (2015) Extinction risk of soil biota. Nature Communications, 6 (1), 1–10. https://doi.org/10.1038/ncomms9862
  25. Wagg, C., Bender, S., Widmer, F. & van der Heijden, M.G.A. (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111, 5266–5270. https://doi.org/10.1073/pnas.1320054111
  26. Zicsi, A. (1975) Zootische Einflüsse auf die Streuzersetzung in Hainbuchen-Eichnewald Ungarns. Pedobiologia, 15, 432–438 [in German with an abstract in English] https://doi.org/10.1016/S0031-4056(23)00064-1