Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-09-30
Page range: 301-318
Abstract views: 569
PDF downloaded: 35

A new wave of Mesoamerican bumblebees? Revising the weisi-complex to reject numts and pseudospecies (Apidae: Bombus)

Department of Life Sciences; Natural History Museum; London; UK
El Colegio de la frontera Sur (ECOSUR); Departamento Agricultura Sociedad y Ambiente; San Cristóbal de Las Casas; Chiapas; Mexico
El Colegio de la frontera Sur (ECOSUR); Departamento Agricultura Sociedad y Ambiente; San Cristóbal de Las Casas; Chiapas; Mexico; Unidad para el Conocimiento; Uso y Valoración de la Biodiversidad; Centro de Estudios Conservacionistas (CECON); Facultad de Ciencias Químicas y Farmacia; Universidad de San Carlos de Guatemala; Guatemala
Estación de Biología Chamela; Universidad Nacional Autónoma de México (UNAM); San Patricio; Jalisco; Mexico
El Colegio de la frontera Sur (ECOSUR); Departamento Agricultura Sociedad y Ambiente; San Cristóbal de Las Casas; Chiapas; Mexico; Investigador por México-CONAHCYT. Centro de Innovación para el Desarrollo Apícola Sustentable en Quintana Roo (CIDASQROO). Universidad Intercultural Maya de Quintana Roo; Mexico
El Colegio de la frontera Sur (ECOSUR); Departamento Agricultura Sociedad y Ambiente; San Cristóbal de Las Casas; Chiapas; Mexico
Hymenoptera barcode CoI gene coalescent integrative taxonomy numts pseudogene pseudospecies PtP species’ discovery taxonomy

Abstract

COI-barcode-like sequences appear to show substantially more species diversity among Mesoamerican bumblebees than had been reported previously from morphological studies. Closer examination shows that some of this apparent diversity may be pseudospecies (groups falsely misinterpreted as separate species), often supported by paralogous ‘numts’ (nuclear copies of mitochondrial sequences). For the well-sampled weisi-complex, we seek to filter out pseudogenes in order to use the orthologous COI-barcode sequences for identifying estimates of evolutionary relationships and likely species’ gene coalescents for candidate species. Even after this filtering, in contrast to recent purely morphological studies our results from an integrative assessment of species’ gene coalescents together with skeletal morphology support that ‘Bombus weisi’ Friese in its recent broad sense consists of two species: B. weisi (which includes the taxon montezumae Cockerell); and B. nigrodorsalis Franklin. Our interpretation rejects likely numts-based pseudospecies and a candidate species that are unsupported by skeletal morphology. This shows that careful attention needs to be paid to both barcode analysis and to skeletal morphology, to avoid describing pseudospecies.

 

References

  1. Baum, D. & Smith, S. (2012) Tree thinking: an introduction to phylogenetic biology. Roberts and Company, Greenwood Village, Colorado, xx + 47 pp.
  2. Bensasson, D., Zhang, D.X., Hartl, D.L. & Hewitt, G.M. (2001) Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology and Evolution, 16, 314–321. https://doi.org/10.1016/S0169-5347(01)02151-6
  3. Bergström, G., Kullenberg, B. & Ställerg-Stenhagen, S. (1973) Studies on natural odoriferous compounds. VII. Recognition of two forms of Bombus lucorum L. (Hymenoptera, Apidae) by analysis of the volatile marking secretion from individual males. Chemica Scripta, 4, 174–182.
  4. Bossert, S., Murray, E.A., Almeida, E.A.B., Brady, S.G., Blaimer, B.B. & Danforth, B.N. (2019) Combining transcriptomes and ultraconserved elements to illuminate the phylogeny of Apidae. Molecular Phylogenetics and Evolution, 130, 121–131. https://doi.org/10.1016/j.ympev.2018.10.012
  5. Brasero, N., Lecocq, T., Martinet, B., Valterova, I., Urbanova, K., De Jonghe, R. & Rasmont, P. (2017) Variability in sexual pheromones questions their role in bumblebee pre-mating recognition system. Journal of Chemical Ecology, 44, 9–17. https://doi.org/10.1007/s10886-017-0910-4
  6. Brasero, N., Vandame, R., Sagot, P., Martinet, B., Valterova, I. & Rasmont, P. (2019) Thoracobombus from Mexico: a description of the male species-specific cephalic labial gland secretons. Apidologie, 50, 183–194. https://doi.org/10.1007/s13592-018-0629-4
  7. Cameron, S.A., Hines, H.M. & Williams, P.H. (2007) A comprehensive phylogeny of the bumble bees (Bombus). Biological Journal of the Linnean Society, 91, 161–188. https://doi.org/10.1111/j.1095-8312.2007.00784.x
  8. Carlini, D.B., Chen, Y. & Stephan, W. (2001) The relationship between third-codon position nucleotide content, codon bias, mRNA secondary structure and gene expression in the drosophilid alcohol dehydrogenase genes Adh and Adhr. Genetics, 159, 623–633. https://doi.org/10.1093/genetics/159.2.623
  9. Cockerell, T.D.A. (1908) Descriptions and records of bees. Annals and Magazine of Natural History, Series 8, 1, 259–267. [inc 344]
  10. Cockerell, T.D.A. (1949) Bees from Central America, principally Honduras. Proceedings of the US National Museum, 98, 429–490. https://doi.org/10.5479/si.00963801.98-3233.429
  11. De Meulemeester, T. (2012) Approche intégrative dans la systématique de taxons complexes: bourdons et abeilles fossiles. In: Laboratoire de Zoologie. Université de Mons, Mons, 316 pp.
  12. de Queiroz, K. (2007) Species concepts and species delimitation. Systematic Biology, 56, 879–886. https://doi.org/10.1080/10635150701701083
  13. Dellicour, S. & Flot, J.-F. (2015) Delimiting species-poor data sets using single molecular markers: a case study of barcode gaps, haplowebs and GMYC. Systematic Biology, 64, 900–908. https://doi.org/10.1093/sysbio/syu130
  14. Drummond, A.J. & Rambaut, A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BioMed Central Evolutionary Biology, 7, 214. https://doi.org/10.1186/1471-2148-7-214
  15. Duennes, M.A., Lozier, J.D., Hines, H.M. & Cameron, S.A. (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Molecular Phylogenetics and Evolution, 64, 219–231. https://doi.org/10.1016/j.ympev.2012.03.018
  16. Duennes, M.A., Petranek, C., Diez de Bonilla, E.P., Merida-Rivas, J., Martinez-Lopez, O., Sagot, P., Vandame, R. & Cameron, S.A. (2017) Population genetics and geometric morphometrics of the Bombus ephippiatus species complex with implications for its use as a commercial pollinator. Conservation Genetics, 18, 553–572. https://doi.org/10.1007/s10592-016-0903-9
  17. Fabricius, J.C. (1804) Systema Piezatorum secundum ordines, genera, species adiectis synonymis, locis, observationibus, descriptionibus. Carolum Reichard, Brunsvigae, 439 + 30 pp. https://doi.org/10.5962/bhl.title.10490
  18. Françoso, E. & Arias, M.C. (2013) Cytochrome c oxidase I primers for corbiculate bees: DNA barcode and mini-barcode. Molecular Ecology Resources, 13, 844–850. https://doi.org/10.1111/1755-0998.12135
  19. Franklin, H.J. (1907) Notes on Bombinae, with descriptions of new species. Entomological News, 18, 90–93.
  20. Franklin, H.J. (1913) The Bombidae of the New World. Part II. Species south of the United States. Transactions of the American Entomological Society, 39, 73–200. https://doi.org/10.5962/bhl.title.122585
  21. Franklin, H.J. (1915) Notes on Bombidae, with descriptions of new forms (Hym.). Entomological News, 26, 409–417.
  22. Friese, H. (1903) Neue Bombus-Arten aus der Neotropischen Region. Zeitschrift für Systematische Hymenopterologie und Dipterologie, 3, 253–255.
  23. Fujisawa, T. & Barraclough, T.G. (2013) Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Systematic Biology, 62, 707–724. https://doi.org/10.1093/sysbio/syt033
  24. Funk, W.C. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics, 34, 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
  25. Goulson, D., Kaden, J.C., Lepais, O., Lye, J.C. & Darvill, B. (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conservation Genetics, 12, 867–879. https://doi.org/10.1007/s10592-011-0190-4
  26. Gueuning, M., Frey, J.E. & Praz, C. (2020) Untraconserved yet informative for species delimitation: ultraconserved elements resolve long-standing systematic enigma in Central European bees. Molecular Ecology, 29, 4203–4220. https://doi.org/10.1111/mec.15629
  27. Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. & Hallwachs, W. (2004) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences, 101, 14812–14817. https://doi.org/10.1073/pnas.0406166101
  28. Hines, H.M. (2008) Historical biogeography, divergence times, and diversification patterns of bumble bees (Hymenoptera: Apidae: Bombus). Systematic Biology, 57, 58–75. https://doi.org/10.1080/10635150801898912
  29. Hofstede, F.E., van Det, M.E. & van Asperen de Boer, J.R.J. (2001) A note on Bombus (Fervidobombus) digressus (Hymenoptera: Apidae) in Costa Rica, with a description of the queen. Entomologische Berichte, 61, 120–125.
  30. ICZN (1999) International code of zoological nomenclature. 4th Edition. International Commission on Zoological Nomenclature, London, 306 pp.
  31. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics, 33, 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
  32. Kawakita, A., Sota, T., Ito, M., Ascher, J.S., Tanaka, H., Kato, M. & Roubik, D.W. (2004) Phylogeny, historical biogeography, and character evolution in bumble bees (Bombus: Apidae) based on simultaneous analysis of three nuclear gene sequences. Molecular Phylogenetics and Evolution, 31, 799–804. https://doi.org/10.1016/j.ympev.2003.12.003
  33. Kullenberg, B., Bergström, G. & Ställerg-Stenhagen, S. (1970) Volatile components of the cephalic marking secretion of male bumble bees. Acta Chemica Scandinavica, 24, 1481–1483. https://doi.org/10.3891/acta.chem.scand.24-1481
  34. Labougle, J.M. (1990) Bombus of México and Central America (Hymenoptera, Apidae). Kansas University Science Bulletin, 54, 35–73.
  35. Labougle, J.M., Ito, M. & Okazawa, T. (1985) The species of the genus Bombus (Hymenoptera: Apidae) of Chiapas, Mexico and Guatemala; with a morphometric and altitudinal analysis. Folia Entomológica Mexicana, 64, 55–72.
  36. Laverty, T.M., Plowright, R.C. & Williams, P.H. (1984) Digressobombus, a new subgenus with a description of the male of Bombus digressus (Hymenoptera: Apidae). Canadian Entomologist, 116, 1051–1056. https://doi.org/10.4039/Ent1161051-7
  37. Lecocq, T., Dellicour, S., Michez, D., Dehon, M., Dewulf, A., De Meulemeester, T., Brasero, N., Valterova, I., Rasplus, J.-Y. & Rasmont, P. (2015) Methods for species delimitation in bumblebees (Hymenoptera, Apidae, Bombus): towards an integrative approach. Zoologica Scripta, 44, 281–297. https://doi.org/10.1111/zsc.12107
  38. Leite, L.A.R. (2012) Mitochondrial pseudogenes in insect DNA barcoding: differing points of view on the same issue. Biota Neotropica, 12, 301–308. https://doi.org/10.1590/S1676-06032012000300029
  39. Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., Lopez-Bautista, J.M., Zuccarello, G.C. & de Clerck, O. (2014) DNA-based species delimitation in algae. European Journal of Phycology, 49, 179–196. https://doi.org/10.1080/09670262.2014.904524
  40. Lopez, J.V., Yuhki, N., Masuda, R., Modi, W. & O’Brien, S.J. (1994) Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of Molecular Evolution, 39, 174–190. https://doi.org/10.1007/BF00163806
  41. Maddison, W.P. & Whitton, J. (2023) The species as a reproductive community emerging from the past. Bulletin of the Society of Systematic Biologists, 2 (1), 35. https://doi.org/10.18061/bssb.v2i1.9358
  42. Meier, R., Shiyang, K., Vaidya, G. & Ng, P.K.L. (2006) DNA barcoding and taxonomy in Diptera: a tale of of high intraspecific variability and low identification success. Systematic Biology, 55, 715–728.
  43. Meyer, C.P. & Paulay, G. (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3, e422. https://doi.org/10.1371/journal.pbio.0030422
  44. Michener, C.D. (2000) The bees of the world. 1st Edition. John Hopkins University Press, Baltimore, Maryland, 913 pp.
  45. Milliron, H.E. (1960) Recognition of bumblebee type specimens, with notes on some dubious names (Hymenoptera: Apidae). Bulletin of the Brooklyn Entomological Society, 55, 87–99.
  46. Milliron, H.E. (1962) Taxonomic notes on some American bumblebees (Hymenoptera: Apidae; Bombinae). Canadian Entomologist, 94, 728–735. https://doi.org/10.4039/Ent94728-7
  47. Milliron, H.E. (1973) A monograph of the western hemisphere bumblebees (Hymenoptera: Apidae; Bombinae). II. The genus Megabombus subgenus Megabombus. Memoirs of the Entomological Society of Canada, 89, 81–237. https://doi.org/10.4039/entm10589fv
  48. Moulton, M.J., Song, H. & Whiting, M.F. (2010) Assessing the effects of primer specificity on eliminating numt coamplification inDNAbarcoding: a case study from Orthoptera (Arthropoda: Insecta). Molecular Ecology Resources, 10, 615–627. https://doi.org/10.1111/j.1755-0998.2009.02823.x
  49. O’Dea, A., Lessios, H.A., Coates, A.G., Eytan, R.I., Restrepo-Moreno, S.A., Cione, A.L., Collins, L.S., de Queiroz, A., Farris, D.W., Norris, R.D., Stallard, R.F., Woodburne, M.O., Aguliera, O., Aubrey, M.-P., Berggren, W.A., Budd, A.F., Cozzuol, M.A., Coppard, S.E., Duque-Caro, H., Finnegan, S., Gasparini, G.M., Grossman, E.L., Johnson, K.G., Keigwin, L.D., N., K., Leigh, E.G., Leonard-Pingel, J.S., Marko, P.B., Pyenson, N.D., Rachello-Dolmen, P.G., Soibelzon, E., Soibelzon, L., Todd, J.A., Vermeij, G.J. & Jackson, J.B.C. (2016) Formation of the Isthmus of Panama. Science Advances, 2016, 11. https://doi.org/10.1126/sciadv.1600883
  50. Plowright, R.C. & Owen, R.E. (1980) The evolutionary significance of bumble bee color patterns: a mimetic interpretation. Evolution, 34, 622–637. https://doi.org/10.2307/2408017
  51. Prebus, M.M. (2021) Phylogenomic species delimitation in the ants of the Temnothorax salvini group (Hymenoptera: Formicidae): an integrative approach. Systematic Entomology, 46, 307–326. https://doi.org/10.1111/syen.12463
  52. Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  53. Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12, 196. https://doi.org/10.1186/1471-2148-12-196
  54. Ronquist, F. & Huelsenbeck, J.P. (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  55. Santos-Junior, J.E., Williams, P.H., Rocha Dias, C.A., Silveira, F.A., Faux, P., Coimbra, R.T.F., Campos, D.P. & Santos, F.R. (2022) Biogeography, divergence times and diversification patterns of bumblebees (Hymenoptera: Apidae), with emphasis on Neotropical species. Diversity, 14, 238–255. https://doi.org/10.3390/d14040238
  56. Schlick-Steiner, B.C., Steiner, F.M., Seifert, B., Stauffer, C., Christian, E. & Crozier, R.H. (2010) Integrative taxonomy: a multisource approach to exploring biodiversity. Annual Review of Entomology, 55, 421–438. https://doi.org/10.1146/annurev-ento-112408-085432
  57. Schmidt, B.C. & Sperling, F.A.H. (2008) Widespread decoupling of mtDNA variation and species integrity in Grammia tiger moths (Lepidoptera: Noctuidae). Systematic Entomology, 33, 613–634. https://doi.org/10.1111/j.1365-3113.2008.00433.x
  58. Skorikov, A.S. (1923) [Palaearctic bumblebees. Part I. General biology (including zoogeography)]. Izvestiya Severnoi oblastnoi stantsii zashchity rastenii ot vreditelei, 4 (1922), 1–160.
  59. Smith, F. (1861) Descriptions of new genera and species of exotic Hymenoptera. Journal of Entomology, 1, 146–155.
  60. Song, H., Buhay, J.E., Whiting, M.F. & Crandall, K.A. (2008) Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America, 105, 13486–13491. https://doi.org/10.1073/pnas.0803076105
  61. Song, H., Moulton, M.J. & Whiting, M.F. (2014) Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta). PLoS ONE, 9, e110508. https://doi.org/10.1371/journal.pone.0110508
  62. Talavera, G., Dinca, V. & Vila, R. (2013) Factors affecting species delimitations with the GMYC model: insights from a butterfly survey. Methods in Ecology and Evolution, 4, 1101–1110. https://doi.org/10.1111/2041-210X.12107
  63. Tamura, K., Stecher, G., Peterson, D., Filipski, A. & Kumar, S. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. [https://academic.oup.com/mbe/article/30/12/2725/1017851] https://doi.org/10.1093/molbev/mst197
  64. Terzo, M., Coppens, P., Valterova, I., Toubeau, G. & Rasmont, P. (2007) Reduced cephalic labial glands in the male bumblebees of the subgenus Rhodobombus Dalla Torre (Hymenoptera, Apidae, Bombus Latreille). Annales de la Société Entomologique de France, 43, 497–503. https://doi.org/10.1080/00379271.2007.10697539
  65. Vogt, O. (1909) Studien über das Artproblem. 1. Mitteilung. Über das Variieren der Hummeln. 1. Teil. Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin, 1909, 28–84.
  66. Vogt, O. (1911) Studien über das Artproblem. 2. Mitteilung. Über das Variieren der Hummeln. 2. Teil. (Schluss). Sitzungsberichte der Gesellschaft naturforschender Freunde zu Berlin, 1911, 31–74.
  67. Wilkins, J.S. (2018) Species: the evolution of the idea. 2nd Edition. CRC Press, Boca Raton, Florida, 427 pp.
  68. Wilkins, J.S. (2023) Understanding species. Cambridge University Press, Cambridge, 150 pp. https://doi.org/10.1017/9781108982764
  69. Williams, P.H. (1985) A preliminary cladistic investigation of relationships among the bumble bees (Hymenoptera, Apidae). Systematic Entomology, 10, 239–255. https://doi.org/10.1111/j.1365-3113.1985.tb00529.x
  70. Williams, P.H. (1994) Phylogenetic relationships among bumble bees (Bombus Latr.): a reappraisal of morphological evidence. Systematic Entomology, 19, 327–344. https://doi.org/10.1111/j.1365-3113.1994.tb00594.x
  71. Williams, P.H. (1998) An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini). Bulletin of The Natural History Museum, Entomology, 67, 79–152. [updated at https://www.nhm.ac.uk/bombus/ (accessed 2015)]
  72. Williams, P.H. (2007) The distribution of bumblebee colour patterns world-wide: possible significance for thermoregulation, crypsis, and warning mimicry. Biological Journal of the Linnean Society, 92, 97–118. https://doi.org/10.1111/j.1095-8312.2007.00878.x
  73. Williams, P.H. (2008) Do the parasitic Psithyrus resemble their host bumblebees in colour pattern? Apidologie, 39, 637–649. https://doi.org/10.1051/apido:2008048
  74. Williams, P.H. (2022) Guerrilla taxonomy and discriminating cryptic species - is quick also dirty? In: Monro, A.K. & Mayo, S.J. (Eds.), Cryptic Species: morphological stasis, circumscription, and hidden diversity. Cambridge University Press, Bristol, pp. 213–241. https://doi.org/10.1017/9781009070553.009
  75. Williams, P.H., Altanchimeg, D., Byvaltsev, A., De Jonghe, R., Jaffar, S., Japoshvili, G., Kahono, S., Liang, H., Mei, M., Monfared, A., Nidup, T., Raina, R., Ren, Z., Thanoosing, C., Zhao, Y. & Orr, M.C. (2020) Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus). European Journal of Taxonomy, 719, 1–120. https://doi.org/10.5852/ejt.2020.719.1107
  76. Williams, P.H., An, J.-D., Dorji, P., Huang, J.-X., Japoshvili, G., Narah, J., Ren, Z., Streinzer, M., Thanoosing, C., Tian, L. & Orr, M.C. (2023) Bumblebees with big teeth: revising the subgenus Alpigenobombus with the good, the bad and the ugly of numts (Hymenoptera: Apidae). European Journal of Taxonomy, 892, 1–65. https://doi.org/10.5852/ejt.2023.892.2283
  77. Williams, P.H., Brown, M.J.F., Carolan, J.C., An, J.-D., Goulson, D., Aytekin, A.M., Best, L.R., Byvaltsev, A.M., Cederberg, B., Dawson, R., Huang, J.-X., Ito, M., Monfared, A., Raina, R.H., Schmid-Hempel, P., Sheffield, C.S., Sima, P. & Xie, Z.-H. (2012) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. world-wide with COI barcodes (Hymenoptera: Apidae). Systematics and Biodiversity, 10, 21–56. https://doi.org/10.1080/14772000.2012.664574
  78. Williams, P.H., Byvaltsev, A.M., Cederberg, B., Berezin, M.V., Ødegaard, F., Rasmussen, C., Richardson, L.L., Huang, J.-X., Sheffield, C.S. & Williams, S.T. (2015) Genes suggest ancestral colour polymorphisms are shared across morphologically cryptic species in arctic bumblebees. PLoS ONE, 10, 1–26. https://doi.org/10.1371/journal.pone.0144544
  79. Williams, P.H., Cameron, S.A., Hines, H.M., Cederberg, B. & Rasmont, P. (2008) A simplified subgeneric classification of the bumblebees (genus Bombus). Apidologie, 39, 46–74. https://doi.org/10.1051/apido:2007052
  80. Williams, P.H., Francoso, E., Martinet, B., Orr, M.C., Ren, Z.-X., Santos Junior, J., Thanoosing, C. & Vandame, R. (2022) When did bumblebees reach South America? Unexpectedly old montane species may be explained by Mexican stopover (Hymenoptera: Apidae). Systematics and Biodiversity, 20, 1–24. https://doi.org/10.1080/14772000.2022.2092229
  81. Williams, P.H., Tang, Y., Yao, J. & Cameron, S. (2009) The bumblebees of Sichuan (Hymenoptera: Apidae, Bombini). Systematics and Biodiversity, 7, 101–190. https://doi.org/10.1017/S1477200008002843
  82. Williams, P.H., Thorp, R.W., Richardson, L.L. & Colla, S.R. (2014) Bumble bees of North America. An identification guide. Princeton University Press, Princeton, New Jersey, 208 pp.
  83. Wilson, E.O. & Brown, W.L. (1953) The subspecies concept and its taxonomic application. Systematic Zoology, 2, 97–111. https://doi.org/10.2307/2411818
  84. Zhang, D.-X. & Hewitt, G.M. (1996) Nuclear integrations: challenge for mitochondrial DNA markers. Trends in Ecology and Evolution, 11, 247–251. https://doi.org/10.1016/0169-5347(96)10031-8
  85. Zhang, J.-J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. https://doi.org/10.1093/bioinformatics/btt499
  86. Zink, R.M. (2004) The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proceedings of the Royal Society of London (B), 271, 561–564. https://doi.org/10.1098/rspb.2003.2617