Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-10-14
Page range: 83-99
Abstract views: 302
PDF downloaded: 13

Genetic relationships of populations of the Black Kite Milvus migrans (Accipitriformes: Accipitridae) in the east of its range in Asia and Australia

Institute of Molecular and Cellular Biology SB RAS; Acad. Lavrentiev Ave. 8/2; Novosibirsk 630090; Russia
Institute of Wildlife Conservation; College of Veterinary Medicine; National Pingtung University of Science and Technology; Taiwan; Raptor Research Group of Taiwan; Raptor Research Group of Taiwan
Institute of Wildlife Conservation; College of Veterinary Medicine; National Pingtung University of Science and Technology; Taiwan; Raptor Research Group of Taiwan; Raptor Research Group of Taiwan; Graduate Institute of Bioresources; National Pingtung University of Science and Technology; Taiwan
Yamashina Institute for Ornithology; Konoyama 115; Abiko; Chiba; Japan
Institute for Biological Problems of Cryolithozone SB RAS; Yakutsk; Russia
Department of Biology and Wildlife Diseases; Faculty of Veterinary Hygiene and Ecology; University of Veterinary and Pharmaceutical Sciences Brno; Palackého tř. 1946/1; 61242 Brno; Czech Republic
Institute of Molecular and Cellular Biology SB RAS; Acad. Lavrentiev Ave. 8/2; Novosibirsk 630090; Russia
Sibecocenter; LLC; Novosibirsk; Russia
Aves Milvus migrans formosanus bird of prey mitochondrial phylogeny raptor conservation phylogeography

Abstract

While the Black Kite Milvus migrans is one of the most widespread birds of prey, occurring over Eurasia, Africa and Australia, it remains poorly understood outside of Europe, with southeast Asian populations particularly mysterious as their taxonomy is based on outdated morphological data. The subspecies M. m. formosanus, described in 1920, is thought to inhabit Taiwan and Hainan; however, populations in these areas have experienced dramatic changes over the past fifty years. Furthermore, M. m. formosanus is the only officially recognised subspecies for which almost no genetic data is yet available. Based on two mitochondrial genes, we compared Taiwanese Black Kites with northeast Asian and Japanese M. m. lineatus, Indian M. m. govinda and Australian M. m. affinis to reconstruct details of their population history. While Indian and Australian Black Kites are descendants of the same population, they do not share common haplotypes, probably having diverged by the end of the last glaciation. The Japanese population is distinctive in showing genetic uniformity, and it may be isolated from the mainland population. Nesting Taiwanese kites carry two previously known M. m. lineatus haplogroups and a new haplogroup possibly inherited from M. m. formosanus previously occurring in the area. A recent decline in the local population, along with expansion of M. m. lineatus, most likely led to Taiwan now being inhabited by descendants of both subspecies, which form two genetically isolated populations in southern and northern Taiwan.

 

References

  1. Allcock, J. & Chow, G. (Eds.) (2021) Hong Kong Bird Report 2018. The Hong Kong Birdwatching Society, Hong Kong, 253 pp.
  2. Andreyenkova, N.G., Karyakin, I.V., Starikov, I.J., Sauer-Gürth, H., Literák, I., Andreyenkov, O.V., Schneider, E.P., Bekmansurov, R.H., Alexeyenko, M.N., Wink, M. & Zhimulev, I.F. (2021) Phylogeography and demographic history of the Black Kite Milvus migrans, a widespread raptor in Eurasia, Australia and Africa. Journal of Avian Biology, 52, e02822. https://doi.org/10.1111/jav.02822.
  3. Andreyenkova, N.G., Hong, S.-Y., Lin, H.-S. & Karyakin, I.V. (2023) Taiwanese Black Kite: Does the subspecies formosanus exist? Raptors Conservation, 46, 34–45. https://doi.org/10.19074/1814-8654-2023-46-34-45
  4. Bandelt, H.-J., Forster, P. & Röhl, A. (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  5. Biodiversity Center of Japan (2023) The Black Kite ringing data, Ministry of the Environment. Available from: http://www.biodic.go.jp/birdRinging/atlas/Milvus_migrans/Milvus_migrans_wamei.html (accessed 11 April 2023)
  6. Bird, M.I., Taylor, D. & Hunt, C. (2005) Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland? Quaternary Science Reviews, 24, 2228–2242. https://doi.org/10.1016/j.quascirev.2005.04.004
  7. BirdLife International (2024) Milvus migrans. http://datazone.birdlife.org/species/factsheet/black-kite-milvus-migrans (accessed 5 June 2024)
  8. Boddaert, P. (1783) Table des planches enluminéez d’histoire naturelle de M. D’Aubenton: avec les denominations de M.M. de Buffon, Brisson, Edwards, Linnaeus et Latham, precedé d’une notice des principaux ouvrages zoologiques enluminés. s.n., Utrecht, 28 pp. [in French] https://doi.org/10.5962/bhl.title.39835
  9. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., Heled, J., Jones, G., Kühnert, D., Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C-H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  10. Choudhuri, A. (2005) Migration of Black-eared or Large Indian Kite Milvus migrans lineatus (Gray) from Mongolia to north-eastern India. Journal of the Bombay Natural History Society, 102, 229–230.
  11. Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W. & McCabe, A.M. (2009) The Last Glacial Maximum. Science, 325, 710–714. [https://www.science.org/doi/10.1126/science.1172873] https://doi.org/10.1126/science.1172873
  12. Clements, J.F., Rasmussen, P.C., Schulenberg, T.S., Iliff, M.J., Fredericks, T.A., Gerbracht, J.A., Lepage, D., Spencer, A., Billerman, S.M., Sullivan B.L. & Wood, C.L. (2023) The eBird/Clements Checklist of Birds of the World. Version 2023. https://www.birds.cornell.edu/clementschecklist/download/ (accessed 5 June 2024)
  13. Cohen, T.J., Nanson, G.C., Jansen, J.D., Jones, B.G., Jacobs, Z., Larsen, J.R., May, J-H., Treble, P., Price, D.M. & Smith, A.M. (2012) Late Quaternary mega-lakes fed by the northern and southern river systems of central Australia: Varying moisture sources and increased continental aridity. Palaeogeography, Palaeoclimatology, Palaeoecology, 356–357, 89–108. https://doi.org/10.1016/j.palaeo.2011.06.023
  14. Cortés-Avizanda, A., Almaraz, P., Carrete, M., Sánchez-Zapata, J.A., Delgado, A., Hiraldo, F. & Donázar, J.A. (2011) Spatial heterogeneity in resource distribution promotes facultative sociality in two Trans-Saharan migratory birds. PLoS ONE, 6, e21016. https://doi.org/10.1371/journal.pone.0021016
  15. Dallmeyer, A., Claussen, M., Lorenz, S.J., Sigl, M., Toohey, M. & Herzschuh, U. (2021) Holocene vegetation transitions and their climatic drivers in MPI-ESM1.2. Climate of the Past, 17, 2481–2513. https://doi.org/10.5194/cp-17-2481-2021
  16. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  17. Davaasuren, B. (2019) Khurkh Bird Ringing Station Annual Report 2018. Wildlife Science and Conservation Center of Mongolia, Ulaanbaatar, 25 pp.
  18. Deckker, P.D., Moros, M., Perner, K., Blanz, T., Wacker, L., Schneider, R., Barrows, T.T., O’Loingsigh, T. & Jansen, E. (2020) Climatic evolution in the Australian region over the last 94 ka spanning human occupancy and unveiling the Last Glacial Maximum. Quaternary Science Reviews, 249, 106593. https://doi.org/10.1016/j.quascirev.2020.106593
  19. del Hoyo, J., Elliott, A. & Sargatal, J. (Eds.) (1994) Handbook of the Birds of the World. Vol. 2. Lynx Edicions BirdLife International, Barcelona and Cambridge, pp.
  20. Dickinson, E.C. & Remsen Jr., J.V. (Eds.) (2013) The Howard & Moore Complete Checklist of the Birds of the World. 4th Edition. Vol. 1. Aves Press, , Eastbourne, 461 pp.
  21. Ding, P., Zhang, Z., Liang, W. & Li, X. (2019) The Forest Birds of China. Hunan Science and Technology Press, Changsha, 960 pp. [in Chinese]
  22. Dodson, J.R. (1989) Late Pleistocene vegetation and environmental shifts in Australia and their bearing on fauna extinctions. Journal of Archaeological Science, 16, 207–217. https://doi.org/10.1016/0305-4403(89)90066-6
  23. Drummond, A.J., Suchard, M.A., Xie, D. & Rambaut, A. (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973. https://doi.org/10.1093/molbev/mss075
  24. Excoffier, L. & Lischer, H.E.L. (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  25. Forsman, D. (2016) Flight Identification of Raptors of Europe, North Africa and the Middle East. Helm Identification Guides. Christopher Helm, London, 608 pp.
  26. GBIF Dataset (2023) GBIF.org GBIF Occurrence. Available from: https://doi.org/10.15468/dl.kgsnv5 (accessed 17 February 2023)
  27. Gill, F., Donsker, D. & Rasmussen, P. (Eds.) (2024) IOC World Bird List. Version 14.1. Available from: https://doi.org/10.14344/IOC.ML.14.1
  28. Glushchenko, Y.N., Nechaev, V.A. & Red’kin, Y.A. (2016) Birds of Primorsky Krai: a Short Faunistic Review. Partnership of Scientific Publications, Moscow, 523 pp. [in Russian]
  29. Gmelin, J.F. (1788) Caroli a Linné systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima tertia, aucta, reformata. Leipzig, Germany, p. 261. [in Latin]
  30. Gould, J. (1838) A Synopsis of the Birds of Australia and the Adjacent Islands. J. Gould, London, 254 pp. https://doi.org/10.5962/bhl.title.102311
  31. Grant, W.S. (2015) Problems and cautions with sequence mismatch analysis and Bayesian skyline plots to infer historical demography. Journal of Heredity, 106, 333–346. https://doi.org/10.1093/jhered/esv020
  32. Gray, J.E. (1831) Illustrations of Indian Zoology; Chiefly Selected from the Collection of Major-General Hardwicke, F. R. S. Vol. 1. Treuttel, Wurtz, Treuttel Jr. & Richter, London, 18 pp. https://doi.org/10.5962/bhl.title.95127
  33. Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696–704. https://doi.org/10.1080/10635150390235520
  34. Harpending, H.C. (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology, 66, 591–600. [http://www.jstor.org/stable/41465371]
  35. HBW and BirdLife International (2024) Handbook of the Birds of the World and BirdLife International Digital Checklist of the Birds of the World. Version 8.1. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v81_Jan24.zip (accessed 5 June 2024)
  36. Hirano, T. & Ueda, M. (2011) Breeding season report. Bird Rescue News, 8, 1–6.
  37. Ho, S.Y.W., Lanfear, R., Bromham, L., Phillips, M.J., Soubrier, J., Rodrigo, A.G. & Cooper, A. (2011) Time-dependent rates of molecular evolution. Molecular Ecology, 20, 3087–3101. https://doi.org/10.1111/j.1365-294X.2011.05178.x
  38. Hong, S.-Y., Lin, H.-S., Walther, B.A., Shie, J.-E. & Sun, Y.-H. (2018) Recent avian poisonings suggest a secondary poisoning crisis of Black Kites during the 1980s in Taiwan. Journal of Raptor Research, 52, 326–337. https://doi.org/10.3356/JRR-17-40.1
  39. Hong, S.-Y., Morrissey, C., Lin, H.-S., Lin, K.-S., Lin, W.-L., Yao, C.-T., Lin, T.-E., Chan, F.-T. & Sun, Y.-H. (2019) Frequent detection of anticoagulant rodenticides in raptors sampled in Taiwan reflects government rodent control policy. Science of The Total Environment, 691, 1051–1058. https://doi.org/10.1016/j.scitotenv.2019.07.076
  40. Hong, S.-Y., Lin, H.-S., Sun, Y.-H. & Tsai, J.-S. (2021) Factors affecting intentional bird poisoning on bean farms in Taiwan: seeding methods and the presence of adjoining duck farms matter. Avian Conservation and Ecology, 16, 15. https://doi.org/10.5751/ACE-01954-160215
  41. Horváth, M.B., Martínez-Cruz, B., Negro, J.J., Kalmár, L. & Godoy, J.A. (2005) An overlooked DNA source for non-invasive genetic analysis in birds. Journal of Avian Biology, 36, 84–88. https://doi.org/10.1111/j.0908-8857.2005.03370.x.
  42. Iwase, A., Hashizume, J., Izuho, M., Takahashi, K. & Sato, H. (2012) Timing of megafaunal extinction in the late Late Pleistocene on the Japanese Archipelago. Quaternary International, 255, 114–124. https://doi.org/10.1016/j.quaint.2011.03.029
  43. Karyakin, I.V. (2017) Problem of identification of Eurasian subspecies of the Black Kite and records of the Pariah Kite in southern Siberia, Russia. Raptors Conservation, 34, 49–67. https://doi.org/10.19074/1814-8654-2017-34-49-67
  44. Kasorndorkbua, C., Ummee, C., Okhlopkov, I. & Duangkae, P. (2022) Different migration routes of Black Kite Milvus migrans subspecies in Thailand. In: 12th ARRCN Symposium, Malaysia, 20–22 January 2022. [unknown pagination]
  45. Kumar, N., Gupta, U., Jhala, Y.V., Qureshi, Q., Gosler, A.G. & Sergio, F. (2020) GPS‑telemetry unveils the regular high‑elevation crossing of the Himalayas by a migratory raptor: implications for definition of a “Central Asian Flyway”. Scientific Reports, 10, 15988. https://doi.org/10.1038/s41598-020-72970-z
  46. Kuroda, N. (1920) Descriptions of three new forms of birds from Japan and Formosa. Dobutsugaku zasshi, 32, 243–248.
  47. Lambeck, K. & Chappel, J. (2001) Sea level change through the last glacial cycle. Science, 292, 679–686. https://doi.org/10.1126/science.1059549
  48. Lin, H.-S., Hong, S.-Y., Tsai, D., Zeng, J.-W., Cheng, W. & Shie, J.-E. (2019) Conservation Action Plan for Black Kites (Milvus migrans) in Taiwan, 2019. Forestry Bureau, Agricultural Committee of the Executive Yuan, Taipei, 42 pp. [in Chinese]
  49. Linnaeus, C. (1758) Systema naturæ per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Laurentius Salvius, Stockholm, 89 pp. [in Latin] https://doi.org/10.5962/bhl.title.542
  50. Literák, I., Balla, M., Vyhnal, S., Škrábal, J., Peške, L., Chrašč, P. & Systad, G. (2020) Natal dispersal of Black Kites from Slovakia. Biologia, 75, 591–598. https://doi.org/10.2478/s11756-019-00323-x
  51. Literák, I., Ovčiariková, S., Škrábal, J., Matušík, H., Raab, R., Spakovszky, P., Vysochin, M., Tamás, E.A. & Kalocsa, B. (2021) Weather-influenced water-crossing behaviour of Black Kites (Milvus migrans) during migration. Biologia, 76, 1267–1273. https://doi.org/10.2478/s11756-020-00643-3
  52. Literák, I., Reháková, V., Xirouchakis, S., Škrábal, J. & Starenko, V. (2022a) Black Kites wintering in Europe: estimated number, subspecies status, and behaviour of a bird wintering on Crete and Turkey. The European Zoological Journal, 89, 1271–1284. https://doi.org/10.1080/24750263.2022.2137253
  53. Literák, I., Škrábal, J., Karyakin, I.V., Andreyenkova, N.G. & Vazhov, S.V. (2022b) Black Kites on a flyway between Western Siberia and the Indian Subcontinent. Scientific Reports, 12, 5581. https://doi.org/10.1038/s41598-022-09246-1
  54. Marchant, S. & Higgins, P.J. (Eds.) (1993) Handbook of Australian, New Zealand and Antarctic Birds. Vol. 2. Raptors to Lapwings. Oxford University Press, Melbourne, 1048 pp.
  55. Matveeva, O.A. & Toushkin, A.A. (2020) The Black Kite in the Territory of the Zeya-Bureya Plain (Amur Region). In: Birds of Prey in Landscapes of the Northern Eurasia: Current Challenges and Trends. Proceedings of the VIII International Conference, Voronezh, 21–27 September 2020. Nature Biosphere Reserve, Tambov. [unknown pagination, in Russian]
  56. Maxwell, A.L. (1999) Holocene Environmental Change in Mainland Southeast Asia: Pollen and Charcoal Records from Cambodia. LSU Historical Dissertations and Theses, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, Louisiana, 291 pp. https://doi.org/10.31390/gradschool_disstheses.7109
  57. Maxwell, A.L. & Liu, K.-B. (2002) Late Quaternary pollen and associated records from the monsoonal areas of continental South and SE Asia. In: Kershaw, P., David, B., Tapper, N., Penny, D. & Brown, J. (Eds.), Bridging Wallace’s Line: The Environmental and Cultural History and Dynamics of the SE-Asian–Australian Region. Advances in Geoecology. Vol. 34. Catena Verlag, Reiskirchen, pp. 189–228.
  58. McDonald, J.H. & Kreitman, M. (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature, 351, 652–654. https://doi.org/10.1038/351652a0
  59. Murphy, B.P., Williamson, G.J. & Bowman, D.M.J.S. (2012) Did central Australian megafaunal extinction coincide with abrupt ecosystem collapse or gradual climate change? Global Ecology and Biogeography, 21, 142–151. https://doi.org/10.1111/j.1466-8238.2011.00668.x
  60. Nagai, K. & Tokita, K.I. (2022) Analysis of genetic structure and genetic diversity in Japanese Black Kite population using mtDNA. Zoological Science, 39, 330–335. https://doi.org/10.2108/zs210121
  61. Nechaev, V.A. (2005) Black Kite—Milvus migrans (Boddaert, 1783) In: Kostenko, V.A. (Ed) The Red List of Primorsky Krai: Animals. Rare and Endangered Animal Species. Apelsin, Vladivostok, 408 pp. [in Russian]
  62. Panuccio, M., Agostini, N., Mellone, U. & Bogliani, G. (2013) Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): a review. Ethology Ecology and Evolution, 26, 1–18. https://doi.org/10.1080/03949370.2013.812147
  63. Ponton, C., Giosan, L., Eglinton, T.I., Fuller, D.Q., Johnson, J.E., Kumar, P. & Collett, T.S. (2012) Holocene aridification of India. Geophysical Research Letters, 39, L03704. https://doi.org/10.1029/2011GL050722
  64. Presti, F.T., Meyer, J., Antas, P.T.Z., Guedes, N.M.R. & Miyaki, C.Y. (2013) Non-invasive genetic sampling for molecular sexing and microsatellite genotyping of Hyacinth Macaw (Anodorhynchus hyacinthinus). Genetics and Molecular Biology, 36, 129–133. https://doi.org/10.1590/S1415-47572013005000001
  65. Ramos-Onsins, S.E. & Rozas, J. (2002) Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100. https://doi.org/10.1093/molbev/msl052
  66. Riedel, N., Fuller, D.Q., Marwan, N., Poretschkin, C., Basavaiah, N., Menzel, P., Ratnam, J., Prasad, S., Sachse, D., Sankaran, M., Sarkar, S. & Stebich, M. (2021) Monsoon forced evolution of savanna and the spread of agro‑pastoralism in peninsular India. Scientific Reports, 11, 9032. https://doi.org/10.1038/s41598-021-88550-8
  67. Rogers, A.R. & Harpending, H. (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569. https://doi.org/10.1093/oxfordjournals.molbev.a040727
  68. Rozas, J., Ferrer-Mata, A., Sánchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sánchez-Gracia, A. (2017) DnaSP v6: DNA sequence polymorphism analysis of large datasets. Molecular Biology and Evolution, 34, 3299–3302. https://doi.org/10.1093/molbev/msx248
  69. Schneider, S. & Excoffier, L. (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics, 152, 1079–1089. https://doi.org/10.1093/genetics/152.3.1079
  70. Sergio, F., Pedrini, P. & Marchesi, L. (2003) Adaptive selection of foraging and nesting habitat by Black Kites (Milvus migrans) and its implications for conservation: a multi-scale approach. Biological Conservation, 112, 351–362. https://doi.org/10.1016/S0006-3207(02)00332-4
  71. Sergio, F., Blas, J. & Hiraldo, F. (2009) Predictors of floater status in a long-lived bird: a cross-sectional and longitudinal test of hypotheses. Journal of Animal Ecology, 78, 109–118. https://doi.org/10.1111/j.1365-2656.2008.01484.x
  72. Smith, B.T. & Klicka, J. (2010) The profound influence of the Late Pliocene Panamanian uplift on the exchange, diversification, and distribution of New World birds. Ecography, 33, 333–342. https://doi.org/10.1111/j.1600-0587.2009.06335.x
  73. Suraprasit, K., Shoocongdej, R., Chintakanon, K. & Bocherens, H. (2021) Late Pleistocene human paleoecology in the highland savanna ecosystem of mainland Southeast Asia. Scientific Reports, 11, 16756. https://doi.org/10.1038/s41598-021-96260-4
  74. Sykes, W.H. (1832) Catalogue of birds of the raptorial and incessorial orders (systematically arranged), observed in the Dukhun. Proceedings of the Zoological Society, 2, 77–99. https://doi.org/10.1111/j.1469-7998.1832.tb06328.x
  75. Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F. & Sergio, F. (2013) Habitat selection by Black Kite breeders and floaters: implications for conservation management of raptor floaters. Biological Conservation, 160, 1–9. https://doi.org/10.1016/j.biocon.2012.12.031
  76. Tung, Y.Y., Pang, C., Fong, H., Tse, I., Chan, Z. & Li, T. (Eds.) (2020) Hong Kong Bird Atlas 2016–2019. Hong Kong Bird Watching Society, Hong Kong, 148 pp.
  77. Vaughan, R.E. & Jones, K.H. (1913) The birds of Hong Kong, Macao, and the West River or Si Kiang in south-eastern China, with special reference to their nidification and seasonal movements—Part II. Ibis, 55, 163–200. https://doi.org/10.1111/j.1474-919X.1913.tb06549.x.
  78. Voris, H.K. (2000) Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. Journal of Biogeography, 27, 1153–1167. https://doi.org/10.1046/j.1365-2699.2000.00489.x
  79. Weir, J.T. & Schluter, D. (2008) Calibrating the avian molecular clock. Molecular Ecology, 17, 2321–2328. https://doi.org/10.1111/j.1365-294X.2008.03742.x
  80. White, J.C., Penny, D., Kealhofer, L. & Maloney, B. (2004) Vegetation changes from the late Pleistocene through the Holocene from three areas of archaeological significance in Thailand. Quaternary International, 113, 111–132. https://doi.org/10.1016/j.quaint.2003.09.001
  81. Wroe, S., Field, J.H., Archer, M., Grayson, D.K., Price, G.J., Louys, J., Faith, J.T., Webb, G.E., Davidson, I. & Mooney, S.D. (2013) Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proceedings of the National Academy of Sciences, 110, 8777–8781. https://doi.org/10.1073/pnas.1302698110