Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-10-29
Page range: 487-510
Abstract views: 250
PDF downloaded: 13

Diving deeper into the taxonomy of the Neoscopelus species complex (Myctophiformes: Neoscopelidae) with the description of Neoscopelus serranoi sp. nov.

Grupo de Estudo do Medio Mariño (GEMM); Edif. Club Naútico bajo; 15960 Ribeira; Spain
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR); Terminal de Cruzeiros do Porto de Leixões; Avenida General Norton de Matos; S/N 4450-208; Matosinhos; Portugal
Centro Oceanográfico de Santander (COST-IEO); CSIC; Severiano Ballesteros 16; 39004 Santander; Spain
Instituto de Investigaciones Marinas; CSIC; Calle Eduardo Cabello 6; 36208 Vigo; Spain
Centro Oceanográfico de Vigo (COV-IEO); CSIC; Subida a Radio Faro 50; 36390 Vigo; Spain
Centro Oceanográfico de Cádiz (COCAD-IEO); CSIC; Puerto Pesquero; Muelle de Levante s/n; 11006 Cádiz; Spain
Departamento de Bioquímica; Xenética e Inmunoloxía; Facultade de Bioloxía; Universidade de Vigo; Rúa Fonte das Abelleiras s/n; 36310 Vigo; Spain; Centro de Investigación Mariña da Universidade de Vigo (CIM-UVIGO); 36310 Vigo; Spain
Pisces Neoscopelus macrolepidotus Neoscopelus microchir COI species complex crypticism distribution

Abstract

Previous studies have highlighted possible cryptic biodiversity in the genus Neoscopelus. This hypothesis was tested using new morphological, molecular and biogeographical data on species of this genus caught in the north Atlantic between 2010 and 2022. The information obtained has been combined with available data in an integrative approach, including a review of morphological characters reported in the ichthyological literature and DNA-based species delimitation analyses. The main outcome of the present study is the description of Neoscopelus serranoi sp. nov. from the Atlantic and southwestern Indian Oceans. The new species is morphologically very similar to Neoscopelus microchir from which differs in having a shorter anal-fin base, a shorter pelvic fin, more dorsal and pectoral-fin rays, less anal-fin rays, fewer gillrakers and fewer isthmus and lateral photophores. They also differ in geographic distribution, with the new species occurring in the Atlantic Ocean and the near southwestern Indian Ocean, whereas N. microchir was originally described from Japanese waters of the Pacific Ocean. A literature review of available morphological data between geographic areas for Neoscopelus macrolepidotus and Neoscopelus microchir showed a large intraspecific overlap and no boundaries. However, molecular species delimitation based on the mitochondrial COI gene revealed the existence of cryptic diversity in both species, with eight to ten molecular operational taxonomic units (MOTU), compared to three valid species. Neoscopelus serranoi sp. nov. was considered an independent MOTU in all analyses performed, supporting the morphological identification as a new species. These results highlight that the taxonomy of Neoscopelus is far from settled and show that a greater sampling effort is needed to resolve the uncertainties and to describe unknown putative species. This also exemplifies the virtues of integrative taxonomy in delving into the systematics of deep-sea fishes.

 

References

  1. Arai, R. (1969) A new iniomous fish of the genus Neoscopelus from Suruga Bay, Japan. Bulletin of the National Museum of Nature and Science, Tokyo, 12 (3), 465–471.
  2. Bañón, R., del Río, J.L., Piñeiro, C. & Casas, M. (2002) Occurrence of tropical affinity fishes in Galician waters NW Spain. Journal of the Marine Biological Association of the United Kingdom, 82 (5), 877–880. https://doi.org/10.1017/S0025315402006288
  3. Bañón, R., Arronte, J.C., Vázquez-Dorado, S., del Río, J.L. & de Carlos, A. (2013) DNA barcoding of the genus Lepidion (Gadiformes: Moridae) with recognition of Lepidion eques as a junior synonym of Lepidion lepidion. Molecular Ecology Resources, 13 (2), 189–199. https://doi.org/10.1111/1755-0998.12045
  4. Bañón, R., Arronte, J.C., Rodríguez-Cabello, C., Piñeiro, C.G., Punzón, A. & Serrano, A. (2016) Commented checklist of marine fishes from the Galicia Bank seamount (NW Spain). Zootaxa, 4067 (3), 293–333. https://doi.org/10.11646/zootaxa.4067.3.2
  5. Bañón, R., de Carlos, A., Acosta-Morillas, V. & Baldó, F. (2022) Geographic range expansion and taxonomic notes of the shortfin neoscopelid Neoscopelus cf. microchir (Myctophiformes: Neoscopelidae) in the North-Eastern Atlantic. Journal of Marine Science and Engineering, 10, 954. https://doi.org/10.3390/jmse10070954
  6. Bañón, R., Barros-García, D., Sánchez-Ruiloba, L., del Río, J.L., González-Carrión, F. & de Carlos, A. (2023) Deep-sea anglerfish (Lophiiformes: Ceratioidei) diversity from the western North Atlantic throughout morphology and DNA barcoding. Marine Biodiversity, 53, 23. https://doi.org/10.1007/s12526-022-01330-z
  7. Bañón-Díaz, R., Casas-Sánchez, J.M., Piñeiro-Álvarez, C.G. & Covelo, M. (1997) Capturas de peces de afinidades tropicales en aguas atlánticas de Galicia (noroeste dela península Ibérica). Boletín Instituto Español de Oceanografía, 13 (1–2), 57–66.
  8. Bekker, V.E. & Shcherbachev, Yu. N. (1990) Bathypelagic species of the families Neoscopelidae and Myctophidae from the Indian Ocean, with a description of a new species of Diaphus. Journal of Ichthyology, 30 (7), 122–134.
  9. Bouckaert, R., Vaughan, T.G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A. Heled, J., Jones, G., Kühnert, D., De Maio, N., Matschiner, M., Mendes, F.K., Müller, N.F., Ogilvie, H.A., du Plessis, L., Popinga, A., Rambaut, A., Rasmussen, D., Siveroni, I., Suchard, M.A., Wu, C.-H., Xie, D., Zhang, C., Stadler, T. & Drummond, A.J. (2019) BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Computational Biology, 15, e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  10. Cabezas, M.P., Lasso-Alcalá, O.M., Quintero T.E., Xavier, R., Giarrizzo, T., Nunes, J. L.S., Machado, F.S., Gómez, J., Pedroza, W.S. & Jowers, M.J. (2022) Clarifiying the taxonomy of some cryptic blennies (Blenniidae) in their native and introduced range. Scientific Reports, 12, 9514. https://doi.org/10.1038/s41598-022-12580-z
  11. Coleman, C.O. (2015) Taxonomy in times of the taxonomic impediment – examples from the community of experts on amphipod crustaceans. Journal of Crustacean Biology, 35 (6), 729–740. https://doi.org/10.1163/1937240X-00002381
  12. Daly-Engel, T.S., Baremore, I.E., Grubbs, R.D., Gulak, S.J., Graham, R.T. & Enzenauer, M.P. (2019) Resurrection of the sixgill shark Hexanchus vitulus Springer & Waller, 1969 (Hexanchiformes, Hexanchidae), with comments on its distribution in the northwest Atlantic Ocean. Marine Biodiversity, 49, 759–768. https://doi.org/10.1007/s12526-018-0849-x
  13. Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. https://doi.org/10.1038/nmeth.2109
  14. de Carlos, A., Bañón, R., Cobo-Arroyo, S., Arronte, J.C., del Río, J.L. & Barros-García, D. (2020) DNA barcoding flags the existence of sympatric cryptic species in the slender codling Halargyreus johnsonii (Gadiformes, Moridae). Marine Biodiversity, 50, 49. https://doi.org/10.1007/s12526-020-01074-8
  15. de Queiroz-Brito, M., Machado, C., Maia, D., Jacobina, U., Nirchio, M., Rotundo, M., Tubino, R., Iriarte, P., Haimovici, M. & Torres, R. (2022) DNA barcoding reveals deep divergent molecular units in Pomatomus saltatrix (Perciformes: Pomatomidae): implications for management and global conservation. Journal of the Marine Biological Association of the United Kingdom, 102 (1–2), 139–151. https://doi.org/10.1017/S0025315422000236
  16. DeSalle, R. & Goldstein, P. (2019) Review and interpretation of trends in DNA Barcoding. Frontiers in Ecology and Evolution, 7, 302. https://doi.org/10.3389/fevo.2019.00302
  17. Devine, J.A., Baker, K.D. & Haedrich, R.L. (2006) Fisheries: deep-sea fishes qualify as endangered. Nature, 439, 29. https://doi.org/10.1038/439029a
  18. Donavaro, R., Fanelli, E., Aguzzi, J., Billett, D., Carugati, L., Corinaldesi, C., Dell’Anno, A., Gjerde, K., Jamieson, A.J., Kark, S., McClain, C., Levin, L., Levin, N., Ramirez-Llodra, E., Ruhl, H., Smith, C.R., Snelgrove, P.V.R., Thomsen, L., Van Dover, C.L. & Yasuhara, M. (2020) Ecological variables for developing a global deep-ocean monitoring and conservation strategy. Nature Ecology and Evolution, 4, 181–192. https://doi.org/10.1038/s41559-019-1091-z
  19. Dupuis, J.R., Roe, A.D. & Sperling, F.A.H. (2012) Multi-locus species delimitation in closely related animals and fungi: one marker is not enough. Molecular Ecology, 21 (18), 4422–4436. https://doi.org/10.1111/j.1365-294X.2012.05642.x
  20. Frutos, I., Kaiser, S., Pułaski, Ł., Studzian, M. & Błazewicz, M. (2022) Challenges and advances in the taxonomy of deep-sea Peracarida: from traditional to modern methods. Frontiers in Marine Science, 9, 799191. https://doi.org/10.3389/fmars.2022.799191
  21. Fujisawa, T. & Barraclough, T.G. (2013) Delimiting Species Using Single-Locus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets. Systematic Biology, 62 (5), 707–724. https://doi.org/10.1093/sysbio/syt033
  22. Funk, D.J. & Omland, K.E. (2003) Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics, 34, 397–423. https://doi.org/10.1146/annurev.ecolsys.34.011802.132421
  23. Furnestin, J., Dardignac, J., Maurin, C., Vincent, A., Coupe, R. & Boutiere, H. (1958) Données nouvelles sur les poissons du Maroc atlantique. Revue des Travaux de l’Institut des Pêches Maritimes, 22, 378–493.
  24. Gaither, M.R., Bowen, B.W., Rocha, L.A. & Briggs, J.C. (2016) Fishes that rule the world: circumtropical distributions revisited. Fish and Fisheries, 17 (3), 664–679. https://doi.org/10.1111/faf.12136
  25. Galtier, N., Nabholz, B., Glémin, S. & Hurst, G.D.D. (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18 (22), 4541–4550. https://doi.org/10.1111/j.1365-294X.2009.04380.x
  26. Glover, A.G., Higgs, N. & Horton, T. (2023) World Register of Deep-Sea species (WoRDSS). Available at: https://www.marinespecies.org/deepsea (accessed 26 July 2023)
  27. Guimaraes, K., Rosso, J., González-Castro, M., Souza, M., Astarloa, J. & Rodrigues, L. (2022) A new species of Hoplias malabaricus species complex (Characiformes: Erythrinidae) from the Crepori River, Amazon basin, Brazil. Journal of Fish Biology, 100 (2), 425–443. https://doi.org/10.1111/jfb.14953
  28. Guindon, S. & Gascuel, O. (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52 (5), 696–704. https://doi.org/10.1080/10635150390235520
  29. Guo, B. & Kong, L. (2022) Comparing the efficiency of single-locus species delimitation methods within Trochoidea (Gastropoda: Vetigastropoda). Genes, 13, 2273. https://doi.org/10.3390/genes13122273
  30. Hulley, P.A. (1990) Neoscopelidae. In: Quéro, J.C., Hureau, J.C., Karrer, C., Post, A. & Saldanha, L. (Eds.), Check-list of the fishes of the eastern tropical Atlantic. Vol. 1. UNESCO, Paris, pp. 468−469.
  31. Hulley, P.A. & Paxton, J.R. (2016) Neoscopelidae. In: Carpenter, K.E. & De Angelis, N. (Eds.), The Living Marine Resources of the Eastern Central Atlantic. Vol. 3. FAO, Rome, pp. 1855–1857.
  32. Ivanova, N.V., Zemlak, T.S., Hanner, R.H. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7 (4), 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
  33. Johnson, J.Y. (1863) Description of five new species of fishes obtained at Madeira. Proceedings of the Zoological Society of London, 1863, 36–46.
  34. Jordan, D.S. & Starks, E.C. (1904) List of fishes dredged by the steamer Albatross off the coast of Japan in the summer of 1900, with descriptions of new species and a review of the Japanese Macrouridae. Bulletin of the United States Fish Commission, 22, 577–630.
  35. Kapli, P., Lutteropp, S., Zhang, J., Kobert, K., Pavlidis, P., Stamatakis, A. & Flouri, T. (2017) Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo, Bioinformatics, 33 (11), 1630–1638. https://doi.org/10.1093/bioinformatics/btx025
  36. Kekkonen, M. & Hebert, P.D.N. (2014) DNA barcode-based delineation of putative species: efficient start for taxonomic workflows. Molecular Ecology Resources, 14 (4), 706–715. https://doi.org/10.1111/1755-0998.12233
  37. Korshunova, T., Lundin, K., Malmberg, K. & Martynov, A. (2023) Narrowly defined taxa on a global scale: The phylogeny and taxonomy of the genera Catriona and Tenellia (Nudibranchia, Trinchesiidae) favours fine-scale taxonomic differentiation and dissolution of the «lumpers & splitters» dilemma. Evolutionary Applications, 16 (2), 428–460. https://doi.org/10.1111/eva.13468
  38. Lanfear, R., Calcott, B., Ho, S.Y.W. & Guindon, S. (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29 (6), 1695–1701. https://doi.org/10.1093/molbev/mss020
  39. Lin, C.H., Nolf, D., Steurbaut, E. & Girone, A. (2017) Fish otoliths from the Lutetian of the Aquitaine Basin (SW France), a breakthrough in the knowledge of the European Eocene ichthyofauna. Journal of Systematic Palaeontology, 15 (11), 879–907. https://doi.org/10.1080/14772019.2016.1246112
  40. Lloris, D. (1986) Ictiofauna demersal e aspectos biogéograficos de la costa sudoccidental de África (SWA/Namibia). Monografías de Zoología Marina, 1, 9–432. https://doi.org/10.1163/9789004611375
  41. Matsubara, K. (1943) Ichthyological annotations from the depth of the Sea of Japan, I-VII. Journal of the Sigenkagaku Kenkyusyo, 1, 37–82.
  42. Maul, G.E. (1951) Nota sobre as duas espécies do género Neoscopelus. Boletim do Museu Municipal do Funchal, 5, 56–63.
  43. Maul, G.E. (1976) The fishes taken in bottom trawls by R.V. ‘Meteor’ during the 1967 Seamount Cruises in the Northeast Atlantic. Meteor Forschungsergeb, Reihe D, 22, 1–69.
  44. McEachran, J.D. & Fechhelm, J.D. (1998) Fishes of the Gulf of Mexico. Vol. 1. University of Texas Press, Austin, Texas, 1112 pp.
  45. Miglietta, M.P., Faucci, A. & Santini, F. (2011) Speciation in the Sea: overview of the symposium and discussion of future directions. Integrative and Comparative Biology, 51 (3), 449–455. https://doi.org/10.1093/icb/icr024
  46. Miller, M.A., Pfeiffer, W. & Schwartz, T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the gateway computing environments workshop (GCE), New Orleans, Lousiana, pp. 1–8. https://doi.org/10.1109/GCE.2010.5676129
  47. Monaghan, M.T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D.J.G., Lees, D. C., Ranaivosolo, R., Eggleton, P., Barraclough, T.G. & Vogler, A.P. (2009) Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology, 58 (3), 298–311. https://doi.org/10.1093/sysbio/syp027
  48. Moore, J.A., Hartel, K.E., Craddock, J.E. & Galbraith, J.K. (2003) An annotated list of deepwater fishes from off the New England region, with new area records. Northeastern Naturalist, 10 (2), 159–248. https://doi.org/10.2307/3858285
  49. Nafpaktitis, B.G. (1977) Family Neoscopelidae. In: Gibbs, R.H., Berry, F.H., Böhlke, J.E., Cohen, D.M., Collette, B.B., Eschmeyer, W.N., Mead, G.W., Merriman, D., Pietsch, T.W. & Parr, A.E. (Eds.), Fishes of the western North Atlantic. Vol. 7. Yale University, New Haven, Connecticut, pp. 1–12.
  50. Ordines, F., Fricke, R., González, F. & Baldó, F. (2017) First record of Neoscopelus macrolepidotus johnson, 1863 (Actinopterygii: Myctophiformes: Neoscopelidae) from Irish waters (Porcupine Bank, north-eastern Atlantic). Acta Ichthyologica et Piscatoria, 47 (1), 85–89. https://doi.org/10.3750/AIEP/02141
  51. Orlov, A.M. (2022). Contemporary ichthyological and fisheries research of deep-water fish: new advances, current challenges, and future developments. Journal of Marine Science and Engineering, 10, 166. https://doi.org/10.3390/jmse10020166
  52. Pons, J., Barraclough, T.G., Gomez-Zurita, J., Cardoso, A., Duran, D.P., Hazell, S., Kamoun, S., Sumlin, W.D. & Volger, A.P. (2006) Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55 (4), 595–609. https://doi.org/10.1080/10635150600852011
  53. Priede, I.G. (2017) Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge University Press, Cambridge, 504 pp. https://doi.org/10.1017/9781316018330
  54. Puckridge, M., Andreakis, N., Appleyard, S.A. & Ward, R.D. (2013) Cryptic diversity in flathead fishes (Scorpaeniformes: Platycephalidae) across the Indo-West Pacific uncovered by DNA barcoding. Molecular Ecology Resources, 13 (1), 32–42. https://doi.org/10.1111/1755-0998.12022
  55. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. https://doi.org/10.1111/1755-0998.13281
  56. Rambaut, A., Drummond, A.J., Xie, D., Baele, G. & Suchard, M.A. (2018) Posterior summarization in Bayesian phylogenetics using tracer 1.7. Systematic Biology, 67 (5), 901–904. https://doi.org/10.1093/sysbio/syy032
  57. Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7 (3), 355–364. https://doi.org/ 10.1111/j.1471-8286.2007.01678.x
  58. Ratnasingham, S. & Hebert, P.D.N. (2013) A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE, 8, e66213. https://doi.org/10.1371/journal.pone.0066213
  59. Reid, N.M. & Carstens, B.C. (2012) Phylogenetic estimation error can decrease the accuracy of species delimitation: a Bayesian implementation of the general mixed Yule-coalescent model. BMC Evolutionary Biology, 12, 196. https://doi.org/10.1186/1471-2148-12-196
  60. Roa-Varón, A., Saavedra-Díaz, L.M., Acero, A. & Mejía, L.S. (2007) Nuevos registros de peces para el Caribe Colombiano de los órdenes Myctophiformes, Polymixiformes, Gadiformes, Ophidiiformes and Lophiiformes. Boletín de Investigaciones Marinas y Costeras, 36, 181–207. https://doi.org/10.25268/bimc.invemar.2007.36.0.206
  61. Rodríguez, C.M. & Sang, L. (1986) Nuevas adicciones a la ictiofauna marina Dominicana. Ciencia y Sociedad, 11, 188–200. https://doi.org/10.22206/cys.1986.v11i2.pp188-200
  62. Rossini, B.C., Oliveira, C.A.M., de Melo, F.A.G., Bertaco, V.d.A., Díaz de Astarloa, J. M., Rosso, J.J., Foresti, F. & Oliveira, C. (2016) Highlighting Astyanax species diversity through DNA barcoding. PLoS ONE, 11, e0167203. https://doi.org/10.1371/journal.pone.0167203
  63. Schwarzhans, W. (2004) Fish otoliths from the Paleocene (Selandian) of West Greenland. Geoscience, 42, 1–32. https://doi.org/10.7146/moggeosci.v42i.140285
  64. Sutton, T.T., Hulley, P.A., Wienerroither, R., Zaera-Pérez, D. & Paxton, J.R. (2020) Identification guide to the mesopelagic fishes of the central and south east Atlantic Ocean. FAO, Rome, 343 pp.
  65. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38 (7), 3022–3027. https://doi.org/10.1093/molbev/msab120
  66. Tatsuta, N., Imamura, H., Nakaya, K., Kawai, T., Abe, T., Sakaoka, K., Takagi, S. & Yabe, M. (2014) Taxonomy of mesopelagic fishes collected around the Ogasawara Islands by the T/S Oshoro-Maru. Memoirs of the Faculty of Fisheries Sciences, Hokkaido University, 56, 1–64.
  67. Teramura, A., Koeda, K., Matsuo, A., Sato, M.P. Senou, H., Ho, H.C., Suyama, Y., Kikuchi, K. & Hirase, S. (2022) Assessing the effectiveness of DNA barcoding for exploring hidden genetic diversity in deep-sea fishes. Marine Ecology-Progress Series, 701, 83–98. https://doi.org/10.3354/meps14193
  68. Uiblein, F. & Gouws, G. (2014) A new goatfish species of the genus Upeneus (Mullidae) based on molecular and morphological screening and subsequent taxonomic analysis. Marine Biology Research, 10 (7), 655–681. https://doi.org/10.1080/17451000.2013.850515
  69. Uyeno, T., Matsuura, K. & Fujii, E. (1983) Fishes trawled off Suriname and French Guiana. Japan Marine Fishery Resource Research Center, Tokyo, 519 pp.
  70. Wada, H., Ohtomi, J. & Motomura, H. (2021) The northernmost and second Japanese records of Diretmoides veriginae (Beryciformes: Diretmidae) from Suruga Bay and off the Satsuma Peninsula, and the first records of Neoscopelus porosus (Myctophiformes: Neoscopelidae) from Kagoshima Prefecture. Ichthy, Natural History of Fishes of Japan, 8, 24–30. https://doi.org/10.34583/ichthy.8.0_24
  71. Wang, M.C. & Shao, K.T. (2006) Ten new records of lanternfishes (Pisces: Myctophiformes) collected around Taiwanese waters. Journal of the Fisheries Society of Taiwan, 33 (1), 55–67. https://doi.org/10.29822/JFST.200603.0006
  72. Wang, T., Zhang, Y.P., Yang, Z.Y., Liu, Z. & Du, Y.Y. (2020) DNA barcoding reveals cryptic diversity in the underestimated genus Triplophysa (Cypriniformes: Cobitidae, Nemacheilinae) from the northeastern Qinghai-Tibet Plateau. BMC Ecology and Evolution, 20, 151. https://doi.org/10.1186/s12862-020-01718-0
  73. Zemlak, T.S., Ward, R.D., Connell, H.D., Holmes, B.H. & Hebert, P.D.N. (2009) DNA barcoding reveals overlooked marine fishes. Molecular Ecology Resources, 9 (s1), 237–242. https://doi.org/10.1111/j.1755-0998.2009.02649.x
  74. Zhang, J., Kapli, R., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29 (22), 2869–2876. https://doi.org/10.1093/bioinformatics/btt499