Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-11-05
Page range: 351-388
Abstract views: 795
PDF downloaded: 288

Three New Species of Deep-Sea Wood-Associated Sea Stars (Asteroidea: Caymanostellidae) from the Eastern Pacific

Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA
Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA
Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA
Department of Marine Zoology; Senckenberg Research Institute and Natural History Museum;60325 Frankfurt; Germany
Scripps Institution of Oceanography; University of California San Diego; La Jolla; CA 92093-0202; USA
Echinodermata wood fall methane seep phylogeny taxonomy asteroid

Abstract

Caymanostellidae is a group of rarely collected and morphologically unusual sea stars that have been exclusively encountered on wood falls in the deep sea. There are currently three genera and seven species described, occurring in the Atlantic, Pacific and Indian Oceans with a depth range between 418 and 6780 m. Three new species are here described from specimens collected from wood falls in multiple localities across the Pacific margin of Costa Rica and near the Gulf of California (Mexico): Caymanostella scrippscognaticausa sp. nov., Caymanostella davidalani sp. nov. and Caymanostella loresae sp. nov. These records expand the known geographical distribution of caymanostellids and constitute their first report from wood falls found at methane seeps. This study also includes the first descriptions of early-stage juvenile caymanostellids and reveals that traits previously considered useful for diagnosis might represent intraspecific and ontogenetic variability, with important consequences for caymanostellid taxonomy.

 

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. (1990) Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Alvarado, J.J., Chacón-Monge, J.L., Azofeifa-Solano, J.C. & Cortés, J. (2022) Diversity of deep-sea echinoderms from Costa Rica. Frontiers in Marine Science, 9, 918878. https://doi.org/10.3389/fmars.2022.918878
  3. Arndt, A., Marquez, C., Lambert, P. & Smith, M.J. (1996) Molecular phylogeny of eastern Pacific sea cucumbers (Echinodermata: Holothuroidea) based on mitochondrial DNA sequence. Molecular Phylogenetics and Evolution, 6, 425–437. https://doi.org/10.1006/mpev.1996.0091
  4. Aziz, A. & Jangoux, M. (1984) Description de quatre nouvelles espèces d’astérides profonds (Echinodermata) de la région Indo-Malaise. Indo-Malayan Zoology, 1, 187–194.
  5. Baker, A.N., Rowe, F.W.E. & Clark, H.E.S. (1986) A new class of Echinodermata from New Zealand. Nature, 321, 862–864. https://doi.org/10.1038/321862a0
  6. Barroso, R., Kudenov, J.D., Halanych, K.M., Saeedi, H., Sumida, P.Y.G. & Bernardino, A.F. (2018) A new species of xylophilic fireworm (Annelida: Amphinomidae: Cryptonome) from deep-sea wood falls in the SW Atlantic. Deep Sea Research Part I: Oceanographic Research Papers, 137, 66–75. https://doi.org/10.1016/j.dsr.2018.05.005
  7. Becker, P., Samadi, S., Zbinden, M., Hoyoux, C., Compère, P. & De Ridder, C. (2009) First insights into the gut microflora associated with an echinoid from wood falls environments. Cahiers de Biologie Marine, 50, 343–352.
  8. Belyaev, G.M. (1974) A new family of abyssal starfishes. Zoologischeskii Zhurnal, 53, 1502–1508.
  9. Belyaev, G.M. (1990) Is it valid to isolate the genus Xyloplax as an independent class of echinoderms? Zoologicheskii Zhurnal, 69, 83–96.
  10. Bernardino, A.F., Levin, L.A., Thurber, A.R. & Smith, C.R. (2012) Comparative composition, diversity and trophic ecology of sediment macrofauna at vents, seeps and organic falls. PLoS ONE, 7, e33515. https://doi.org/10.1371/journal.pone.0033515
  11. Bienhold, C., Pop Ristova, P., Wenzhöfer, F., Dittmar, T. & Boetius, A. (2013) How deep-sea wood falls sustain chemosynthetic life. PLoS ONE, 8, e53590. https://doi.org/10.1371/journal.pone.0053590
  12. Blake, D.B. (1987) A classification and phylogeny of post-Palaeozoic sea stars (Asteroidea: Echinodermata). Journal of Natural History, 21, 481–528. https://doi.org/10.1080/00222938700771141
  13. Brett, C.H. (2017) Evolutionary biology of wood-eating sea urchins (Temnopleuridea: Trigonocidaridae). Master of Science Thesis, San Francisco State University. Available from: http://hdl.handle.net/10211.3/199487 (accessed 7 October 2024)
  14. Clement, M., Posada, D. & Crandall, K.A. (2000) TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
  15. Colgan, D.J., Ponder, W.F., Beacham, E., & Macaranas, J. (2003) Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Research, 23, 123–148. https://doi.org/10.1071/MR03002
  16. Darriba, D., Posada, D., Kozlov, A.M., Stamatakis, A., Morel, B. & Flouri, T. (2019) ModelTest-NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Molecular Biology and Evolution, 37, 291–294. https://doi.org/10.1093/molbev/msz189
  17. Dilman, A.B., Minin, K.V. & Petrov, N.B. (2022) New record of the wood-associated sea star Caymanostella, with notes on the phylogenetic position of the family Caymanostellidae (Asteroidea). Zoological Journal of the Linnean Society, 194, 14–35. https://doi.org/10.1093/zoolinnean/zlab060
  18. Distel, D.L., Baco, A.R., Chuang, E., Morrill, W., Cavanaugh, C. & Smith, C.R. (2000) Do mussels take wooden steps to deep-sea vents? Nature, 403, 725–726. https://doi.org/10.1038/35001667
  19. Duperron, S., Lorion, J., Samadi, S., Gros, O. & Gaill, F. (2009) Symbioses between deep-sea mussels (Mytilidae: Bathymodiolinae) and chemosynthetic bacteria: diversity, function and evolution. Comptes Rendus Biologies, 332, 298–310. https://doi.org/10.1016/j.crvi.2008.08.003
  20. Edler, D., Klein, J., Antonelli, A. & Silvestro, D. (2021) raxmlGUI 2.0: A graphical interface and toolkit for phylogenetic analyses using RAxML. Methods in Ecology and Evolution, 12, 373–377. https://doi.org/10.1111/2041-210X.13512.
  21. Fujita, T., Stampanato, S. & Jangoux, M. (1994) Beyaevostella hyugaenis: a new species of deep-sea asteroid (Asteroidea, Caymanostellidae) found on a sunken wood from off southern Japan. Bulletin of the National Science Museum, Tokyo, 20, 183–188.
  22. Gale, A.S. (2011) The phylogeny of post-palaeozoic Asteroidea (Neoasteroidea, Echinodermata). Special Papers in Palaeontology, 85, 1–112.
  23. Hatch, A.S., Liew, H., Hourdez, S. & Rouse, G.W. (2020) Hungry scale worms: Phylogenetics of Peinaleopolynoe (Polynoidae, Annelida), with four new species. ZooKeys, 932, 27–74. https://doi.org/10.3897/zookeys.932.48532
  24. Hookabe, N., Moritaki, T., Jimi, N. & Ueshima, R. (2022) A new oerstediid discovered from wood falls in the Sea of Kumano, Japan: Description of Rhombonemertes rublinea gen. et sp. nov. (Nemertea: Eumonostilifera). Zoologischer Anzeiger, 301, 154–162. https://doi.org/10.1016/j.jcz.2022.10.003
  25. Janies, D.A., Voight, J.R. & Daly, M. (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Systematic Biology, 60, 420–438. https://doi.org/10.1093/sysbio/syr044
  26. Katoh, K. & Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  27. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. (2019) RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics, 35, 4453–4455. https://doi.org/10.1093/bioinformatics/btz305
  28. Leigh, J.W. & Bryant, D. (2015) PopART: Full‐feature software for haplotype network construction. Methods in Ecology and Evolution/British Ecological Society, 6, 1110–1116. https://doi.org/10.1111/2041-210x.12410
  29. Limaye, A. (2012) Drishti: a volume exploration and presentation tool. In: Developments in X-Ray Tomography VIII. SPIE, Bellingham, Washington, pp. 191–199. https://doi.org/10.1117/12.935640
  30. Linchangco, G.V., Foltz, D.W., Reid, R., Williams, J., Nodzak, C., Kerr, A.M., Miller, A.K., Hunter, R., Wilson, N.G., Nielsen, W.J., Mah, C.L., Rouse, G.W., Wray, G.A. & Janies, D.A. (2017) The phylogeny of extant starfish (Asteroidea: Echinodermata) including Xyloplax, based on comparative transcriptomics. Molecular Phylogenetics and Evolution, 115, 161–170. https://doi.org/10.1016/j.ympev.2017.07.022
  31. Maddison, W.P. & Maddison, D.R. (2023) Mesquite: a modular system for evolutionary analysis. Version 3.70. Available from: http://www.mesquiteproject.org (accessed 27 June 2023)
  32. Magalhães, W.F., Linse, K. & Wiklund, H. (2017) A new species of Raricirrus (Annelida: Cirratuliformia) from deep-water sunken wood off California. Zootaxa, 4353 (1), 51–68. https://doi.org/10.11646/zootaxa.4353.1.3
  33. Magalhães, W.F. & Hilliard, J. (2022) Two new deep-sea species of Capitella (Annelida: Capitellidae) from sunken wood in the Northeast Pacific. Zootaxa, 5125 (2), 229–240. https://doi.org/10.11646/zootaxa.5125.2.7
  34. Mah, C.L. (2006) A new species of Xyloplax (Echinodermata: Asteroidea: Concentricycloidea) from the northeast Pacific: comparative morphology and a reassessment of phylogeny. Invertebrate Biology, 125, 136–153. https://doi.org/10.1111/j.1744-7410.2006.00048.x
  35. Mah, C.L. & Blake, D.B. (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS ONE, 7, e35644. https://doi.org/10.1371/journal.pone.0035644
  36. Martin-Cao-Romero, C., Solís-Marín, F.A. & Bribiesca-Contreras, G. (2021) Crinitostella laguardai, new genus and species of wood-dwelling deep-sea sea-star (Asteroidea: Caymanostellidae) from the Gulf of Mexico. Journal of the Marine Biological Association of the United Kingdom, 101, 591–597. https://doi.org/10.1017/S0025315421000448
  37. Okanishi, M., Kato, M., Watanabe, H.K., Chen, C. & Fujita, T. (2020) Large populations of two new species of Ophiambix (Echinodermata, Ophiuroidea) discovered on Japanese hot vents and cold seeps. Raffles Bulletin of Zoology, 68, 196–213. https://doi.org/10.26107/RBZ-2020-0017
  38. Palumbi, S.R. (1996) Nucleic acids II: the polymerase chain reaction. In: Hillis, D.M., Moritz, G. & Mable, B.K. (Eds.), Molecular Systematics. 2nd Edition. Sinauer, Sunderland, Massachusetts, pp. 205–247.
  39. Payne, C.Y., Tilic, E., Boschen-Rose, R.E., Gannon, A., Stiller, J., Hiley, A.S., Grupe, B.M., Mah, C.L. & Rouse, G.W. (2023) Xyloplax princealberti (Asteroidea, Echinodermata): A new species that is not always associated with wood falls. Diversity, 15, 1212. https://doi.org/10.3390/d15121212
  40. Pereira, O.S., Gonzalez, J., Mendoza, G., Le, J., McNeill, M., Ontiveros, J., Lee, R.W., Rouse, G.W., Cortés, J. & Levin, L.A. (2022) Does substrate matter in the deep sea? A comparison of bone, wood, and carbonate rock colonizers. PLoS ONE, 17, e0271635. https://doi.org/10.1371/journal.pone.0271635
  41. Pop Ristova, P., Bienhold, C., Wenzhöfer, F., Rossel, P.E. & Boetius, A. (2017) Temporal and spatial variations of bacterial and faunal communities associated with deep-sea wood falls. PLoS ONE, 12, e0169906. https://doi.org/10.1371/journal.pone.0169906
  42. Romano, C., Nunes-Jorge, A., Le Bris, N., Rouse, G.W., Martin, D. & Borowski, C. (2020) Wooden stepping stones: Diversity and biogeography of deep-sea wood boring Xylophagaidae (Mollusca: Bivalvia) in the North-East Atlantic Ocean, with the description of a new genus. Frontiers in Marine Science, 7. https://doi.org/10.3389/fmars.2020.579959
  43. Rowe, F.W.E. (1988) Review of the extant class Concentricycloidea and reinterpretation of the fossil class Cyclocystoidea. In: Burke, R.D., Mladenov, P.V., Lambert, P. & Parsley, R.L. (Eds.), Echinoderm Biology. Balkema, Rotterdam, pp. 3–15.
  44. Rowe, F.W.E. (1989) A review of the family Caymanostellidae (Echinodermata: Asteroidea) with the description of a new species of Caymanostella Belyaev and a new genus. Proceedings of the Linnean Society of New South Wales. Linnean Society of New South Wales, 111, 293–307.
  45. Saeedi, H., Bernardino, A.F., Shimabukuro, M., Falchetto, G. & Sumida, P.Y.G. (2019) Macrofaunal community structure and biodiversity patterns based on a wood-fall experiment in the deep South-west Atlantic. Deep Sea Research, Part I: Oceanographic Research Papers, 145, 73–82. https://doi.org/10.1016/j.dsr.2019.01.008
  46. Sagorny, C., von Döhren, J., Rouse, G.W. & Tilic, E. (2022) Cutting the ribbon: bathyal Nemertea from seeps along the Costa Rica margin, with descriptions of 2 new genera and 9 new species. European Journal of Taxonomy, 845, 132–174. https://doi.org/10.5852/ejt.2022.845.1959
  47. Smith, A.B. (1988) To group or not to group: the taxonomic position of Xyloplax. In: Burke, R.D., Mladenov, P.V., Lambert, P. & Parsley, R.L. (Eds.), Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference. Balkema, Rotterdam, pp. 17–23.
  48. Smith, C.R., Glover, A.G., Treude, T., Higgs, N.D. & Amon, D.J. (2015) Whale-fall ecosystems: recent insights into ecology, paleoecology, and evolution. Annual review of marine science 7, 571–596. https://doi.org/10.1146/annurev-marine-010213-135144
  49. Swofford, D.L. (2002) PAUP* Phylogenetic Analysis Using Parsimony (and other methods). Available from: https://paup.phylosolutions.com (accessed 3 May 2024)
  50. Tandberg, A.H.S., Rapp, H.T., Schander, C. & Vader, W. (2013) A new species of Exitomelita (Amphipoda: Melitidae) from a deep-water wood fall in the northern Norwegian Sea. Journal of natural history, 47, 1875–1889. https://doi.org/10.1080/00222933.2012.725778
  51. Vaidya, G., Lohman, D.J. & Meier, R. (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics: the international journal of the Willi Hennig Society, 27, 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x.
  52. Voight, J.R. (2015) Xylotrophic bivalves: aspects of their biology and the impacts of humans. The Journal of molluscan studies, 81, 175–186. https://doi.org/10.1093/mollus/eyv008
  53. Voight, J.R., Marshall, B.A., Judge, J., Halanych, K.M., Li, Y., Bernardino, A.F., Grewe, F. & Maddox, J.D. (2019) Life in wood: preliminary phylogeny of deep-sea wood-boring bivalves (Xylophagaidae), with descriptions of three new genera and one new species. The Journal of molluscan studies, 85, 232–243. https://doi.org/10.1093/mollus/eyz003
  54. Wolff, T. (1979) Macrofaunal utilization of plant remains in the deep sea. Sarsia, 64, 117–143. https://doi.org/10.1080/00364827.1979.10411373