Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2024-12-31
Page range: 65-75
Abstract views: 193
PDF downloaded: 69

A new species of Elodophthalmus from Lower Cretaceous Lebanese amber unravels the systematic placement of Elodophthalmidae and reconciling phylogenetic conflicts within Tenebrionoidea

State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology; Chinese Academy of Sciences; Nanjing 210008; China
State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology; Chinese Academy of Sciences; Nanjing 210008; China
State Key Laboratory of Palaeobiology and Stratigraphy; Nanjing Institute of Geology and Palaeontology; Chinese Academy of Sciences; Nanjing 210008; China; Faculty of Science II; Natural Sciences Department; Lebanese University; Fanar - El-Matn; PO Box 90656 Jdeideh; Lebanon
Coleoptera Elodophthalmidae phylogenomics fossil Cretaceous Lebanese amber model

Abstract

Elodophthalmidae, represented by the sole genus Elodophthalmus Kirejtshuk & Azar, is an extinct beetle family described from Lower Cretaceous Lebanese amber. Elodophthalmidae has been hypothesized to share close affinities with the extant superfamily Scirtoidea, but their exact systematic position remains elusive. Here, we describe a new species of Elodophthalmus, Elodophthalmus maksoudae sp. nov., based on a well-preserved fossil from Early Cretaceous amber collected in Hammana/Mdeyrij, Central Lebanon, the same locality as other congeneric species. Using improved imaging technologies, we reveal detailed morphological characters of the fossil, providing critical evidence for a more robust systematic placement of Elodophthalmus. Our findings present compelling evidence supporting the placement of Elodophthalmidae within the superfamily Tenebrionoidea. Furthermore, we highlight that conflicts in the interfamilial relationships within Tenebrionoidea across various datasets can, at least partially, be mitigated by adopting the site-heterogeneous CAT-GTR+G model. We suggest that the traditional reliance on site-homogeneous models in Sanger sequencing-based studies may fail to capture the complexities of nucleotide substitution patterns. With the increasing recognition of the importance of modeling among-site compositional heterogeneity, our study points to the necessity for more rigorous model testing in the phylogenetic studies of ancient lineages such as Tenebrionoidea.

 

References

  1. Azar, D., Dejax, J. & Masure, E. (2011) Palynological analysis of amber-bearing clay from the Lower Cretaceous of Central Lebanon. Acta Geologica Sinica (English Edition), 85 (4), 942–949. https://doi.org/10.1111/j.1755-6724.2011.00497.x
  2. Azar, D., Perrichot, V., Néraudeau, D. & Nel, A. (2003) New psychodid flies from the Cretaceous ambers of Lebanon and France, with a discussion about Eophlebotomus connectens Cockerell, 1920 (Diptera, Psychodidae). Annals of the Entomological Society of America, 96 (2), 117–127. https://doi.org/10.1603/0013-8746(2003)096[0117:NPFTCA]2.0.CO;2
  3. Batelka, J., Kundrata, R. & Bocak, L. (2016) Position and relationships of Ripiphoridae (Coleoptera: Tenebrionoidea) inferred from ribosom al and mitochondrial molecular markers. Annales Zoologici, 66 (1), 113–123. https://doi.org/10.3161/00034541ANZ2016.66.1.008
  4. Benton, M.J., Wilf, P. & Sauquet, H. (2022). The Angiosperm Terrestrial Revolution and the origins of modern biodiversity. New Phytologist, 233 (5), 2017–2035. https://doi.org/10.1111/nph.17822
  5. Bocak, L., Barton, C., Crampton-Platt, A., Chesters, D., Ahrens, D. & Vogler. A.P. (2014) Building the Coleoptera tree-of-life for >8000 species: composition of public DNA data and fit with Linnaean classification. Systematic Entomology, 39, 97–110. https://doi.org/10.1111/syen.12037
  6. Bujaki, T., Van Looyen, K. & Rodrigue, N. (2023). Measuring the relative contribution to predictive power of modern nucleotide substitution modeling approaches. Bioinformatics Advances, 3 (1), vbad091. https://doi.org/10.1093/bioadv/vbad091
  7. Cai, C.Y., Tihelka, E., Pisani, D. & Donoghue, P.C. (2020) Data curation and modeling of compositional heterogeneity in insect phylogenomics: a case study of the phylogeny of Dytiscoidea (Coleoptera: Adephaga). Molecular Phylogenetics and Evolution, 147, 106782. https://doi.org/10.1016/j.ympev.2020.106782
  8. Cai, C.Y., Lawrence, J.F., Yamamoto, S., Leschen, R.A.B., Newton, A.F., Ślipiński, A., Yin, Z.W., Huang, D.Y. & Engel, M.S. (2019) Basal polyphagan beetles in mid-Cretaceous amber from Myanmar: biogeographic implications and long-term morphological stasis. Proceedings of the Royal Society B, 286, 20182175. https://doi.org/10.1098/rspb.2018.2175
  9. Cai, C.Y. & Huang, D.Y. (2014) The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae). Naturwissenschaften, 101, 813–817. https://doi.org/10.1007/s00114-014-1221-z
  10. Cai, C.Y., Tihelka, E., Giacomelli, M., Lawrence, J.F., Ślipiński, A., Kundrata, R., Yamamoto, S., Thayer, M.K., Newton, A.F., Leschen, R.A.B., Gimmel, M.L., Lü, L., Engel, M.S., Bouchard, P., Huang, D.Y., Pisani, D. & Donoghue, P.C.J. (2022). Integrated phylogenomics and fossil data illuminate the evolution of beetles. Royal Society Open Science, 9 (3), 211771. https://doi.org/10.1098/rsos.211771
  11. Cai, C.Y., Tihelka, E., Liu, X.Y. & Engel, M.S. (2023) Improved modelling of compositional heterogeneity reconciles phylogenomic conflicts among lacewings. Palaeoentomology, 6 (1), 49–57. https://doi.org/10.11646/palaeoentomology.6.1.8
  12. Cai, C.Y. (2024) Ant backbone phylogeny resolved by modelling compositional heterogeneity among sites in genomic data. Communications Biology, 7 (1), 106. https://doi.org/10.1038/s42003-024-05793-7
  13. Campbell, J.M. & Marshall, J.D. (1964) The ocular index and its application to the taxonomy of the Alleculidae (Coleoptera). The Coleopterists Bulletin, 18 (2), 42. https://doi.org/10.5962/p.372397
  14. Cosandey, V., Konvička, O., & Toussaint, E.F. (2024). Legacy molecular phylogenetics suggests restricting the concept of Melandryidae and resurrecting Osphyidae (Coleoptera: Tenebrionoidea). Arthropod Systematics & Phylogeny, 82, 621–627. https://doi.org/10.3897/asp.82.e131738
  15. Fu, Y.Z., Li, Y.D., Su, Y.T., Cai, C.Y. & Huang, D.Y. (2021) Application of confocal laser scanning microscopy to the study of amber bioinclusions. Palaeoentomology, 4, 266–278. https://doi.org/10.11646/palaeoentomology.4.3.14
  16. Gunter, N.L., Levkaničová, Z., Weir, T.H., Slipiński, A., Cameron, S.L. & Bocak, L. (2014) Towards a phylogeny of the Tenebrionoidea (Coleoptera). Molecular Phylogenetics and Evolution, 79, 305–312. https://doi.org/10.1016/j.ympev.2014.05.028
  17. Hakim, M., Huang, D.Y. & Azar, D. (2022) Debris-carrying psocodean nymph from Lebanese amber. Palaeoentomology, 5 (3), 222–225. https://doi.org/10.11646/palaeoentomology.5.3.3
  18. Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., St. John, O., Wild, R., Hammond, P.M., Ahrens, D., Balke, M., Caterino, M.S., Gómez-Zurita, J., Ribera, I., Barraclough, T.G., Bocakova, M., Bocak, L. & Vogler, A.P. (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318, 1913–1916. https://doi.org/10.1126/science.1146954
  19. Kapli, P., Yang, Z.H. & Telford, M.J. (2020) Phylogenetic tree building in the genomic age. Nature Reviews Genetics, 21, 428–444. https://doi.org/10.1038/s41576-020-0233-0
  20. Kergoat, G.J., Soldati, L., Clamens, A.L., Jourdan, H., Jabbour-Zahab, R., Genson, G., Bouchard, P. & Condamine, F.L. (2014). Higher-level molecular phylogeny of darkling beetles (Coleoptera: Tenebrionidae). Systematic Entomology, 39 (3), 486–499. https://doi.org/10.1111/syen.12065
  21. Kirejtshuk, A.G. & Azar, D. (2008). New taxa of beetles (Insecta, Coleoptera) from Lebanese amber with evolutionary and systematic comments. Alavesia, 2, 15–46.
  22. Kirejtshuk, A.G. & Azar, D. (2013). Current knowledge of Coleoptera (Insecta) from the Lower Cretaceous Lebanese amber and taxonomical notes for some Mesozoic groups. Terrestrial Arthropod Reviews, 6 (1-2), 103–134. https://doi.org/10.1163/18749836-06021061
  23. Kirejtshuk, A.G., Chetverikov, P.E., Azar, D. & Kirejtshuk, P. A. (2016). Ptismidae fam. nov. (Coleoptera, Staphyliniformia) from the lower Cretaceous Lebanese amber. Cretaceous Research, 59, 201–213. https://doi.org/10.1016/j.cretres.2015.10.027
  24. Lartillot, N. (2020) PhyloBayes: Bayesian phylogenetics using site-heterogeneous models. In: Scornavacca, C., Delsuc, F. & Galtier, N. (Eds), Phylogenetics in the Genomic Era. No commercial publisher, authors open access book, pp. 1.5:1–1.5:16.
  25. Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. (2013) Phylobayes mpi: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Systematic Biology, 62, 611–615. https://doi.org/10.1093/sysbio/syt022
  26. Li, Y.D., Tihelka, E., Leschen, R.A., Yu, Y., Ślipiński, A., Pang, H., Huang, D.Y., Kolibáč, J. & Cai, C.Y. (2021) An exquisitely preserved tiny bark‐gnawing beetle (Coleoptera: Trogossitidae) from mid‐Cretaceous Burmese amber and the phylogeny of Trogossitidae. Journal of Zoological Systematics and Evolutionary Research, 59 (8), 1939–1950. https://doi.org/10.1111/jzs.12515
  27. Li, Y.D., Hsiao, Y., Yoshitomi, H., Huang, D.Y. & Cai, C.Y. (2022a) Homalenchodes, a new genus of Serropalpini from mid-Cretaceous amber of northern Myanmar (Coleoptera: Tenebrionoidea: Melandryidae). Palaeoentomology, 5 (3), 246–253. https://doi.org/10.11646/palaeoentomology.5.3.7
  28. Li, Y.D., Huang, D.Y. & Cai, C.Y. (2022b) “Attagenus” burmiticus from mid-Cretaceous amber reinterpreted as a member of Orphilinae (Coleoptera: Dermestidae). Palaeoentomology, 5 (4), 390–394. https://doi.org/10.11646/palaeoentomology.5.4.12
  29. Li, Y.D., Engel, M.S., Tihelka, E. & Cai, C.Y. (2023) Phylogenomics of weevils revisited: data curation and modelling compositional heterogeneity. Biology Letters, 19, 20230307. https://doi.org/10.1098/rsbl.2023.0307
  30. Lozano-Fernandez, J. (2022) A practical guide to design and assess a phylogenomic study. Genome Biology and Evolution, 14 (9), evac129. https://doi.org/10.1093/gbe/evac129
  31. Maksoud, S. & Azar, D. (2020) Lebanese amber: latest updates. Palaeoentomology, 3 (2), 125–155. https://doi.org/10.11646/palaeoentomology.3.2.2
  32. Maksoud, S. & Azar, D. (2022). A new early Barremian amber outcrop from Mount Sannine (Central Lebanon). Palaeoentomology, 5 (1), 71–75. https://doi.org/10.11646/palaeoentomology.5.1.8
  33. Maksoud, S., Granier, B.R. & Azar, D. (2022) Palaeoentomological (fossil insects) outcrops in Lebanon. Carnets de Géologie, 22 (16), 699–743. https://doi.org/10.2110/carnets.2022.2216
  34. Maksoud, S., Iskandar-Tabib, D., Azar, D. (2024) Tannoura: A new early Barremian fossiliferous amber outcrop from South Lebanon. Mesozoic, 1 (1), 90‒98. https://doi.org/10.11646/mesozoic.1.1.7
  35. McKenna, D.D., Wild, A.L., Kanda, K., Bellamy, C.L., Beutel, R.G., Caterino, M.S., Farnum, C.W., Hawks, D.C., Ivie, M.A., Jameson, M.L., Leschen, R.A.B., Marvaldi, A.E., McHugh, J.V., Newton, A.F., Robertson, J.A., Thayer, M.F., Whiting, M.F., Lawrence, J.F., Ślipiński, A., Maddison, D.R. & Farrell, B.D. (2015) The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40, 835–880. https://doi.org/10.1111/syen.12132
  36. McKenna, D.D., Shin, S., Ahrens, D., Balke, M., Beza-Beza, C., Clarke, D.J., Donath, A., Escalona, H.E., Friedrich, F., Letsch, H., Liu, S.L., Maddison, D., Mayer, C., Misof, B., Murin, P.J., Niehuis, O., Peters, R.S., Podsiadlowski, L., Pohl, H., Scully, E.D., Yan, E.V., Zhou, X., Ślipiński, A. & Beutel, R.G. (2019) The evolution and genomic basis of beetle diversity. Proceedings of the National Academy of Sciences, 116 (49), 24729–24737. https://doi.org/10.1073/pnas.1909655116
  37. Tihelka, E., Cai, C.Y., Giacomelli, M., Pisani, D. & Donoghue, P.C. (2020a). Integrated phylogenomic and fossil evidence of stick and leaf insects (Phasmatodea) reveal a Permian–Triassic co-origination with insectivores. Royal Society Open Science, 7 (11), 201689. https://doi.org/10.1098/rsos.201689
  38. Tihelka, E., Giacomelli, M., Huang, D.Y., Pisani, D., Donoghue, P.C.J. & Cai, C.Y. (2020b) Fleas are parasitic scorpionflies. Palaeoentomology, 3 (6), 641–653. https://doi.org/10.11646/palaeoentomology.3.6.16
  39. Tihelka, E., Thayer, M.K., Newton, A.F. & Cai, C.Y. (2020c) New data, old story: molecular data illuminate the tribal relationships among rove beetles of the subfamily Staphylininae (Coleoptera: Staphylinidae). Insects, 11 (3), 164. https://doi.org/10.3390/insects11030164
  40. Tihelka, E., Cai, C.Y., Giacomelli, M., Lozano-Fernandez, J., Rota-Stabelli, O., Huang, D.Y., Engel, M.S., Donoghue, P.C.J. & Pisani, D. (2021) The evolution of insect biodiversity. Current Biology, 31 (19), R1299–311. https://doi.org/10.1016/j.cub.2021.08.057
  41. Yu, Y., Ślipiński, A., Lawrence, J.F., Yan, E., Ren, D. & Pang, H. (2019) Reconciling past and present: Mesozoic fossil record and a new phylogeny of the family Cerophytidae (Coleoptera: Elateroidea). Cretaceous Research, 99, 51–70. https://doi.org/10.1016/j.cretres.2019.02.024
  42. Zhang, S.Q., Che, L.H., Li, Y., Liang, D., Pang, H., Ślipiński, A. & Zhang, P. (2018) Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nature Communications, 9 (1), 205. https://doi.org/10.1038/s41467-017-02644-4