Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-01-03
Page range: 290-335
Abstract views: 2931
PDF downloaded: 8

Like grains of sand: Ninetis spiders on the Arabian Peninsula (Araneae, Pholcidae)

Zoological Research Museum Alexander Koenig; LIB; Adenauerallee 127; 53113; Bonn; Germany
Zoological Research Museum Alexander Koenig; LIB; Adenauerallee 127; 53113; Bonn; Germany
Araneae CO1 barcode genetic distances Ninetinae Oman Saudi Arabia species delimitation taxonomy

Abstract

Ninetinae is a group of small to tiny, short-legged daddy-longlegs spiders (Pholcidae) that has its highest diversity in the New World. Only two genera are known to occur in the Old World: the nominotypical genus Ninetis Simon, 1890 on the Arabian Peninsula and in Africa, and the monotypic genus Magana Huber, 2019 in Oman. Here we redescribe the type species of Ninetis, N. subtilissima Simon, 1890, and describe three new species from the Arabian Peninsula: N. amoud sp. nov. from Saudi Arabia, N. marnif sp. nov. and N. samail sp. nov. from Oman. All species descriptions are based on males and females, supported by CO1 barcodes, and accompanied by SEM photographs. While N. amoud sp. nov. is morphologically and genetically similar to N. subtilissima (and to the known African species, of which no CO1 barcodes are available), the two new Omani species are morphologically very distinct. Intraspecific genetic (K2P) distances are partly very high, in particular in N. amoud sp. nov. (up to 17%) and N. marnif sp. nov. (up to 13%). An exploratory species delimitation analysis suggests that these two nominal species might in fact represent several cryptic species each. No corresponding morphological variation was detected.

 

References

  1. Abuzinada, A.H., Al-Wetaid, Y.I., & Al-Basyouni, S.Z.M. (2005) The National Strategy for Conservation of Biodiversity in the Kingdom of Saudi Arabia. Prepared and issued by The National Commission for Wildlife Conservation and Development. Riyadh, Saudi Arabia. Available from: https://www.cbd.int/doc/world/sa/sa-nbsap-01-en.pdf (accessed 7 August 2024)
  2. Al-Namazi, A.A., Al-Khulaidi, A.W.A., Algarni, S. & Al-Sagheer, N.A. (2021) Natural plant species inventory of hotspot areas in Arabian Peninsula: Southwest Al-Baha region, Saudi Arabia. Saudi Journal of Biological Sciences, 28, 3309–3324. https://doi.org/10.1016/j.sjbs.2021.02.076
  3. Ashfaq, M., Blagoev, G., Tahir, H.M., Khan, A.M., Mukhtar, M.K., Akhtar, S., Butt, A., Mansoor, S. & Hebert P.D.N. (2019) Assembling a DNA barcode reference library for the spiders (Arachnida: Araneae) of Pakistan. PLoS ONE, 14 (5), e0217086. https://doi.org/10.1371/journal.pone.0217086
  4. Astrin, J.J., Huber, B.A., Misof, B. & Kluetsch C.F.C. (2006) Molecular taxonomy in pholcid spiders (Pholcidae, Araneae): evaluation of species identification methods using CO1 and 16S rRNA. Zoologica Scripta, 35, 441–457. https://doi.org/10.1111/j.1463-6409.2006.00239.x
  5. Astrin, J.J., Höfer, H., Spelda, J., Holstein, J., Bayer, S., Hendrich, L., Huber, B.A., Kielhorn, K.-H., Krammer H.-J., Lemke, M., Monje, J.C., Morinière, J., Rulik, B., Petersen, M., Janssen, H. & Muster, C. (2016) Towards a DNA barcode reference database for spiders and harvestmen of Germany. PLoS ONE, 11 (9), e0162624. https://doi.org/10.1371/journal.pone.0162624
  6. Berland, L. (1920) Diagnoses préliminaires d'araignées d'Afrique orientale. Voyage de Ch. Alluaud et R. Jeannel (1re note). Bulletin de la Société Entomologique de France, 24, 347–350. https://doi.org/10.3406/bsef.1919.26518
  7. Blagoev, G.A., deWaard, J.R., Ratnasingham, S., deWaard, S.L., Lu, L., Robertson, J., Telfer, A.C. & Hebert, P.D.N. (2016) Untangling taxonomy: a DNA barcode reference library for Canadian spiders. Molecular Ecology Resources, 16, 325–341. https://doi.org/10.1111/1755-0998.12444
  8. Bristowe, W. S. (1938) The classification of spiders. Proceedings of the Zoological Society of London (B), 108, 285–322. https://doi.org/10.1111/j.1096-3642.1938.tb00028.x
  9. Brown, B.V. (1993) A further chemical alternative to critical-point-drying for preparing small (or large) flies. Fly Times, 11, 10.
  10. Čandek, K. & Kuntner, M. (2015) DNA barcoding gap: reliable species identification over morphological and geographical scales. Molecular Ecology Resources, 15, 268–277. https://doi.org/10.1111/1755-0998.12304
  11. Cock, P.J., Antao, T., Chang, J.T., Chapman, B.A., Cox, C.J., Dalke, A., Friedberg, I., Hamelryck, T., Kauff, F., Wilczynski, B. & de Hoon, M.J. (2009) Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423. https://doi.org/10.1093/bioinformatics/btp163
  12. Domènech, M., Malumbres-Olarte, J., Enguídanos, A., Múrria, C. & Arnedo, M.A. (2022) What DNA barcodes reveal: microhabitat preference, hunting strategy and dispersal ability drive genetic variation across Iberian spider species. Insect Conservation and Diversity, 15, 248–262. https://doi.org/10.1111/icad.12552
  13. Eberle, J., Dimitrov, D., Valdez-Mondragón, A. & Huber, B.A. (2018) Microhabitat change drives diversification in pholcid spiders. BMC Evolutionary Biology, 18, 141. https://doi.org/10.1186/s12862-018-1244-8
  14. Fage, L. (1912) Biospeologica XXV. Études sur les araignées cavernicoles. I. Revision des Ochyroceratidae (n. fam.). Archives de Zoologie Expérimentale et Générale, 50 (2), 97–162, pls. 4–12. https://biostor.org/reference/118049
  15. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791. https://doi.org/10.2307/2408678
  16. Huber, B.A. (2000) New World pholcid spiders (Araneae: Pholcidae): a revision at generic level. Bulletin of the American Museum of Natural History, 254, 1–348. https://doi.org/10.1206/0003-0090(2000)254<0001:NWPSAP>2.0.CO;2
  17. Huber, BA. (2002) Ninetis russellsmithi n. sp., an unusual new pholcid spider species from Malawi (Araneae: Pholcidae). Journal of Insect Science, 2.4, 1–3. https://doi.org/10.1093/jis/2.1.4
  18. Huber, B.A. & Carvalho, L.S. (2019) Filling the gaps: descriptions of unnamed species included in the latest molecular phylogeny of Pholcidae (Araneae). Zootaxa, 4546 (1), 1–96. https://doi.org/10.11646/zootaxa.4546.1.1
  19. Huber, B.A. & El Hennawy, H. (2007) On Old World ninetine spiders (Araneae: Pholcidae), with a new genus and species and the first record for Madagascar. Zootaxa, 1635 (1), 45–53. https://doi.org/10.11646/zootaxa.1635.1.3
  20. Huber, B.A. & van Harten, A. (2001) Ninetis subtilissima Simon, 1890 (Araneae: Pholcidae): Redescription and SEM ultrastructure. American Museum Novitates, 3336, 1–7. https://doi.org/10.1206/0003-0082(2001)336<0001:NSSAPR>2.0.CO;2
  21. Huber. B.A. & Villarreal, O. (2020) On Venezuelan pholcid spiders (Araneae, Pholcidae). European Journal of Taxonomy, 718, 1–317. https://doi.org/10.5852/ejt.2020.718.1101
  22. Huber. B.A., Le Gall, P. & Mavoungou, J.F. (2014) Pholcid spiders from the Lower Guinean region of Central Africa: an overview, with descriptions of seven new species (Araneae, Pholcidae). European Journal of Taxonomy, 81, 1–46. https://doi.org/10.5852/ejt.2014.81
  23. Huber, B.A., Eberle, J. & Dimitrov, D. (2018) The phylogeny of pholcid spiders: a critical evaluation of relationships suggested by molecular data (Araneae, Pholcidae). ZooKeys, 789, 51–101. https://doi.org/10.3897/zookeys.789.22781
  24. Huber, B.A., Meng, G., Král, J., Ávila Herrera, I.M. & Izquierdo, M.A. (2023a) Revision of the South American Ninetinae genus Guaranita (Araneae, Pholcidae). European Journal of Taxonomy, 900, 32–80. https://doi.org/10.5852/ejt.2023.900.2301
  25. Huber, B.A., Meng, G., Král, J., Ávila Herrera, I.M., Izquierdo, M.A. & Carvalho, L.S. (2023b) High and dry: integrative taxonomy of the Andean spider genus Nerudia (Araneae: Pholcidae). Zoological Journal of the Linnean Society, 198, 534–591. https://doi.org/10.1093/zoolinnean/zlac100
  26. Huber, B.A., Meng, G., Váldez-Mondragón, A., Král, J., Ávila Herrera, I.M. & Carvalho, L.S. (2023c) Short-legged daddy-long-leg spiders in North America: the genera Pholcophora and Tolteca (Araneae, Pholcidae). European Journal of Taxonomy, 880, 1–89. https://doi.org/10.5852/ejt.2023.880.2173
  27. Huber, B.A., Meng, G., Dupérré, N., Astrin, J. & Herrera, M. (2023d) Andean giants: Priscula spiders from Ecuador, with notes on species groups and egg-sac troglomorphism (Araneae: Pholcidae). European Journal of Taxonomy, 909, 1–63. https://doi.org/10.5852/ejt.2023.909.2351
  28. Huber, B.A., Meng, G., Cabra García, J. & Carvalho, L.S. (2024a) Thriving in dry conditions: on the Neotropical spider genus Galapa (Araneae: Pholcidae). Zootaxa, 5419 (3), 301–347. https://doi.org/10.11646/zootaxa.5419.3.1
  29. Huber, B.A., Meng, G., Dederichs, T.M., Michalik, P., Forman, M. & Král, J. (2024b) Castaways: the Leeward Antilles endemic spider genus Papiamenta (Araneae: Pholcidae). Invertebrate Systematics, 38, IS23052. https://doi.org/10.1071/IS23052
  30. Huber, B.A., Meng, G. & Valdez-Mondragón, A. (2024c) Notes on Chisosa (Araneae: Pholcidae), with the description of a new species from Mexico. Zootaxa, 5419 (2), 217–244. https://doi.org/10.11646/zootaxa.5419.2.3
  31. Huber, B.A., Meng, G., Král, H., Ávila Herrera, I.M. & Carvalho, L.S. (2024d) Diamonds in the rough: Ibotyporanga (Araneae, Pholcidae) spiders in semi-arid Neotropical environments. European Journal of Taxonomy. [in press]
  32. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  33. Kimura, M. (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. https://doi.org/10.1007/bf01731581
  34. Letunic, I. & Bork, P. (2021) Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Research, 49, W293–W296. https://doi.org/10.1093/nar/gkab301
  35. Logunov, D.V. & Azarkina, G.N. (2018) Redefinition and partial revision of the genus Stenaelurillus Simon, 1886 (Arachnida, Araneae, Salticidae). European Journal of Taxonomy, 430, 1–126. https://doi.org/10.5852/ejt.2018.430
  36. Oh, J.-H., Kim, S. & Lee, S. (2022) DNA barcodes reveal population-dependent cryptic diversity and various cases of sympatry of Korean leptonetid spiders (Araneae: Leptonetidae). Scientific Reports, 12, 15528. https://doi.org/10.1038/s41598-022-18666-y
  37. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21, 609–620. https://doi.org/10.1111/1755-0998.13281
  38. Ratnasingham, S. & Hebert, P.D.N. (2007) bold: The Barcode of Life Data System (http://www.barcodinglife.org). Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  39. Saitou, N. & Nei, M. (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
  40. Simon, E. (1890) Étude sur les arachnides de l’Yemen. Annales de la Société Entomologique de France, 6, 77–124.
  41. Simon, E. (1893) Histoire naturelle des araignées. Deuxième Édition. Tome Premier. Roret, Paris, 232 pp [pp. 256–488]
  42. Suyama, M., Torrents, D. & Bork, P. (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609–W612. https://doi.org/10.1093/nar/gkl315
  43. Tamura, K., Stecher, G. & Kumar, S. (2021) MEGA 11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
  44. Tyagi, K., Kumar, V., Kundu, S., Pakrashi, A., Prasad, P., Caleb, J.T. & Chandra, K. (2019) Identification of Indian spiders through DNA barcoding: Cryptic species and species complex. Scientific Reports, 9, 14033. https://doi.org/10.1038/s41598-019-50510-8
  45. Yang, C., Zheng, Y., Tan, S., Meng, G., Rao, W., Yang, C., Bourne, D.G., O’Brian, P.A., Xu, J., Liao, S., Chen, A., Chen, X., Jia, X., Zhang, A.B. & Liu, S. (2020) Efficient COI barcoding using high throughput single-end 400bp sequencing. BMC Genomics, 21, 862. https://doi.org/10.1186/s12864-020-07255-w