Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-01-15
Page range: 459-476
Abstract views: 75
PDF downloaded: 7

Mitophylogenetic patterns in Tettigoniidae: Insights from the complete mitogenome of Saga natoliae (Orthoptera)

Department of Biology; Faculty of Art & Science; Hatay Mustafa Kemal University; 31060 Hatay; Turkey
Department of Biology; Faculty of Art & Science; Hatay Mustafa Kemal University; 31060 Hatay; Turkey
Department of Biology; Faculty of Science; Akdeniz University; 07058 Antalya; Turkey
Department of Biology; Faculty of Science; Akdeniz University; 07058 Antalya; Turkey
Orthoptera Mitogenome OrthopteraPhylogeny Saginae Tettigoniidae

Abstract

Although there is a consensus on the distinctiveness of Saginae, its phylogenetic position within Tettigoniidae remains a topic to debate. Comprehensive DNA data are essential for clarifying subfamilial relationships within the Tettigoniidae. This study investigates the complete mitogenome of Saga natoliae, providing critical insights into the phylogenetic position of the Saginae. To achieve this, we established two datasets: the first comprises total mitogenome sequences from all published representatives of Tettigoniidae subfamilies and tribes, while the second includes partial mitogenome sequences from subfamilies not represented in the first dataset. The first dataset produced a well-resolved phylogenetic tree, whereas the second exhibited limited resolution. By synthesizing results from both the following conclusions were made: (1) The mitogenome of Saga natoliae displays typical characteristics of both Pancrustaceae and Orthoptera. (2) The mitophylogeny of Tettigoniidae reveals four main clades: (i) Saginae, (ii) Lipotactinae, (iii) the Tettigonioid clade (including Tettigoniidae + Bradyporinae, Hexacentrinae, Conocephalinae, and Meconematinae) and (iv) the Phaneropteroid clade (comprising Pseudophyllinae, Mecopodinae, and Phaneropterinae). Consequently, Saginae is established as a distinct internal lineage, referred to as the Saginoid clade. (3) Our findings do not support close relationships between Saginae and Zaprochilinae, Tympanophorinae and Phasmodinae. (4) Data confirm that Saginae is a monophyletic subfamily, likely originated in Africa and subsequently dispersed to the West Palearctic region.

 

References

  1. Binici, B., Şirin, D. & Taylan, M.S. (2021) Molecular genetics and phylogeny of Ephippigera species group of genus Saga Charpentier, 1825 (Orthoptera: Ensifera: Saginae) in Anatolia. Zootaxa, 4991 (2), 331–342. https://doi.org/10.11646/zootaxa.4991.2.6.
  2. Brunner von Wattenwyl, C. (1878) In Monographie der Phaneropteriden. K. K. Zoologisch-Botanische Gesellschaft in Wien, Wien. 401 pp.
  3. Cameron, S.L. (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annual Review of Entomology, 59, 95–117. https://doi.org/10.1146/annurev-ento-011613-162007
  4. Campbell, N.J.H. & Barker, S.C. (1999) The novel mitochondrial gene arrangement of the cattle tick, Boophilus microplus: fivefold tandem repetition of a coding region. Molecular Biology and Evolution, 16, 732–740. https://doi.org/10.1093/oxfordjournals.molbev.a026158
  5. Castro, L.R., Ruberu, K. & Dowton, M. (2006) Mitochondrial genomes of Vanhornia eucnemidarium (Apocrita, Vanhornidae) and Primeuchroeus spp. (Aculeata, Chrysididae): evidence of rearranged mitochondrial genomes within Apocrita (Insecta: Hymenoptera). Genome, 49, 752–766. https://doi.org/10.1139/g06-030
  6. Caudell, A.N. (1916) Orthoptera Fam. Locustidae Subfam. Saginae. In: Wytsman, P. (Ed.), Genera Insectorum. Vol. 167. V. Verteneuil & L. Desmet press, Bruxelles, pp. 1–10.
  7. Chang, H., Qiu, Z., Yuan, H., Wang, X., Li, X., Sun, H., Guo, X., Lu, Y., Feng, X., Majid, M. & Huang, Y. (2020) Evolutionary rates of and selective constraints on the mitochondrial genomes of Orthoptera insects with different wing types. Molecular Phylogenetics and Evolution, 145, 106734. https://doi.org/10.1016/j.ympev.2020.106734
  8. Charpentier, T. (1825) De Orthopteris Europaeis. In: Horae entomologicae, adjectis tabulis novem coloratis. apud A. Gosohorsky, Wratislaviae, pp. 61–181. https://doi.org/10.5962/bhl.title.5530
  9. Cigliano, M.M., Braun, H., Eades, D.C. & Otte, D. (2024) Orthoptera Species File. Available from: http://orthoptera.speciesfile.org/ (accessed 3 November 2024)
  10. Çıplak, B., Yahyaoğlu, Ö., Uluar, O. & Knowles, L.L. (2024) Understudied regions and messy taxonomy: Geography, not taxonomy, is the best predictor for genetic divergence of the Poecilimon bosphoricus species group. Systematic Entomology, 49 (2), 221–236. https://doi.org/10.1111/syen.12615
  11. Dan, Z.C., Guan, D.L., Jiang, T., Wang, H., Zhao, L. & Xu, S.Q. (2022) Evolution of gene arrangements in the mitogenomes of Ensifera and characterization of the complete mitogenome of Schizodactylus jimo. International Journal of Molecular Sciences, 23 (20), 12094. https://doi.org/10.3390/ijms232012094
  12. Donath, A., Jühling, F., Al-Arab, M., Bernhart, S.H., Reinhardt, F., Stadler, P.F., Middendorf, M. & Bernt, M. (2019) Improved annotation of protein-coding gene boundaries in metazoan mitochondrial genomes. Nucleic Acids Research, 47 (20), 10543–10552. https://doi.org/10.1093/nar/gkz833
  13. Feng, J., Zhou, Z. & Shi, F. (2018) Mitogenome of Prophalangopsis obscura. GenBank Direct Submission, College of Life Sciences, Hebei University, Baoding, Hebei. Submitted on 4 January 2018. Available from: https://www.ncbi.nlm.nih.gov/nuccore/MG754205 (accessed 1 August 2024)
  14. Fenn, J.D., Cameron, S.L. & Whiting, M.F. (2007). The complete mitochondrial genome sequence of the Mormon cricket (Anabrus simplex: Tettigoniidae: Orthoptera) and an analysis of control region variability. Insect Molecular Biology, 16, 239–252. https://doi.org/10.1111/j.1365-2583.2006.00721.x
  15. Flook, P.K., Klee, S. & Rowell, C.H. (1999) Combined molecular phylogenetic analysis of the Orthoptera (Arthropoda, Insecta) and implications for their higher systematics. Systematic Biology, 48 (2), 233-253. https://doi.org/10.1080/106351599260274
  16. Gao, H., Tan, W., Yu, X., Jiang, W., Zhang, H. & Tian, X. (2019) The complete mitochondrial genome of Euconocephalus nasutus and its phylogenetic analysis. Mitochondrial DNA, Part B: Resources, 4 (2), 2946–2947. https://doi.org/10.1080/23802359.2019.1662750
  17. Giannoulis, T., Dutrillaux, A.M., Lemonnier-Darcemont, M., Darcemont, C., Myrthianou, E., Stamatis, C., Dutrillaux, B. & Mamuris, Z. (2011) Molecular phylogeny of European Saga: comparison with chromosomal data. Bulletin of Insectology, 64 (2), 263–267.
  18. Gorochov, A.V. (1988) The classification and phylogeny of grasshoppers (Gryllida – Orthoptera, Tettigonioidea). In: Pomerenko, A. (Ed.), The Cretaceous Biocoenotic Crisis and the Evolution of Insects. Hayka, Moscow, pp. 145–190.
  19. Guan, B., Guo, H. & Zhou, Z. (2016) Illumina next-generation sequencing reveals the mitochondrial genome of Ducetia japonica (Orthoptera: Tettigoniidae). Mitochondrial DNA B Resources, 1 (1), 361–362. https://doi.org/10.1080/23802359.2016.1168717
  20. Gullan, P.J. & Cranston, P.S. (2014) The Insects: An Outline of Entomology, 5th Edition. Wiley-Blackwell, West Sussex, 624 pp.
  21. Han, N., Yuan, H., Wang, J., Zhou, Y. & Mao, S. (2019) Mitochondrial genome of a brachypterous species in Meconematinae: Acosmetura nigrogeniculata and its phylogenetic implication. Mitochondrial DNA B Resources, 4 (2), 2098–2099. https://doi.org/10.1080/23802359.2019.1622468
  22. Hare, R.M., Kennington, W.J. & Simmons, L.W. (2022) Evolutionary divergence via sexual selection acting on females in a species with sex role reversal. Functional Ecology, 36, 2742–2755. https://doi.org/10.1111/1365-2435.14174
  23. He, Z.-Q. (2022) GenBank Direct Submission. School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai, Shanghai 200241, China. Submitted on 8 March 2022. Available from: https://www.ncbi.nlm.nih.gov/nuccore/OM937880 (accessed 1 August 2024)
  24. Jin, J.-J., Yu, W.B., Yang, J.B., Song, Y., de Pamphilis, C.W., Yi, T.S. & Li, D.Z. (2020) GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21, 24. https://doi.org/10.1186/s13059-020-02154-5
  25. Kaltenbach, A.P. (1964) Zur Systematik und Verbreitung der Raubheuschrecken (Tettigoniidae - Saginae), insbesondere der europäischen Arten der Gattung Saga Charpentier. Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen, 16, 68–82.
  26. Kaltenbach, A.P. (1971) Unterlagen für eine Monographie der Saginae III. Die Saginae der äthiopischen Region. Beiträge zur Entomologie, 21 (3–6), 403–476. https://doi.org/10.21248/contrib.entomol.21.3-6.403-476
  27. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14 (6), 587–589. https://doi.org/10.1038/nmeth.4285
  28. Karakaş, M.Y., Yahyaoğlu, Ö., Uluar, O., Budak, M. & Çıplak, B. (2023) Mitochondrial genome of Poecilimon cretensis (Orthoptera: Tettigoniidae: Phaneropterinae): Strong phylogenetic signals in gene overlapping regions. Zootaxa, 5263 (1), 141–147. https://doi.org/10.11646/zootaxa.5263.1.9
  29. Karşı, U. & Çıplak, B. (2019a) Complete mitogenome of Psorodonotus venosus (Orthoptera, Tettigoniidae; Tettigoniinae): Short intergenic spacers shorten the total genome. Zootaxa, 4614 (3), 4614–4615. https://doi.org/10.11646/zootaxa.4614.3.4
  30. Karşı, U. & Çıplak, B. (2019b) Mitogenome of Anterastes babadaghi (Orthoptera: Tettigoniinae; Platycleidini): Frequent conserved overlapping regions within Tettigoniinae. Zootaxa, 4651 (1), 173–190. https://doi.org/10.11646/zootaxa.4651.1.11
  31. Kim, I., Lee, E.M., Seol, K.Y., Yun, E.Y., Lee, Y.B., Hwang, J.S. & Jin, B.R. (2006) The mitochondrial genome of the Korean hairstreak, Coreana raphaelis (Lepidoptera: Lycaenidae). Insect Molecular Biology, 15, 217–225. https://doi.org/10.1111/j.1365-2583.2006.00630.x
  32. Kolics, B., Ács, Z., Chobanov, D.P., Orci, K.M., Qiang, L.S., Kovács, B., Kondorosy, E., Decsi, K., Taller, J., Specziár, A., Orbán, L. & Müller, T. (2012) Re-visiting phylogenetic and taxonomic relationships in the genus Saga (Insecta: Orthoptera). Molecular Phylogenetics and Evolution, 65 (2), 444–451. https://doi.org/10.1371/journal.pone.0042229
  33. Lavrov, D.V., Boore, J.L. & Brown, W.M. (2000) The complete mitochondrial DNA sequence of the horseshoe crab Limulus polyphemus. Molecular Biology and Evolution, 17, 813–824. https://doi.org/10.1093/oxfordjournals.molbev.a026360
  34. Leavitt, J.R., Hiatt, K.D., Whiting, M.F. & Song, S. (2013) Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: a phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Molecular Phylogenetics and Evolution, 67, 494–508. https://doi.org/10.1016/j.ympev.2013.02.019
  35. Li, J., Chen, Q., Wen, M., Wang, J., Wang, Y. & Ren, B. (2019) Phylogeny and acoustic signal evolution of a pure tone song katydid Pseudophyllus titan (Orthoptera: Tettigoniidae) based on the complete mitogenome. Mitochondrial DNA, Part A, DNA Mapping, Sequencing, and Analysis, 30 (3), 385–396. https://doi.org/10.1080/24701394.2018.1502280
  36. Liu, J., Luo, H., Lu, X. & Bian, X. (2021) New additions to the Chinese Agraeciini Redtenbacher, 1891 (Orthoptera, Tettigoniidae: Conocephalinae) with report on the complete mitochondrial genome of Palaeoagraecia brunnea Ingrisch, 1998. Zootaxa, 5072 (3), 238–254. https://doi.org/10.11646/zootaxa.5072.3.2
  37. Lu, X. (2022) Mitogenome of Ocellarnaca nigra. GenBank Direct Submission. College of Life Sciences, Guangxi Normal University, Yanzhonglu 1st, Guilin, Guangxi 541006, China. Submitted on 11 May 2022. Available from: https://www.ncbi.nlm.nih.gov/nuccore/ON493688 (accessed 1 August 2024)
  38. Ma, C. & Li, J. (2018) Comparative analysis of mitochondrial genomes of the superfamily Grylloidea (Insecta, Orthoptera) reveals phylogenetic distribution of gene rearrangements. International Journal of Biological Macromolecules, 120, 1048–1054. https://doi.org/10.1016/j.ijbiomac.2018.08.181
  39. Mao, S.L., Huang, Y. & Shi, F.M. (2010) DNA barcoding analysis of species in the family Tettigonioidae based on COI genes. Unpublished. GenBank Direct Submission, Shaanxi Normal University, Institute of Zoology, Xi’an, Shaanxi, China. Submitted on 12 November 2010. Available from: https://www.ncbi.nlm.nih.gov/nuccore/HQ609327 (accessed 1 August 2024)
  40. Mao, S.L., Lu, Y., Xun, L.L. & Zhou, Y.F. (2019) Characterization of the mitochondrial genome of Alloxiphidiopsis emarginata (Orthoptera, Tettigoniidae, Meconematinae). Mitochondrial DNA, Part B, 4 (2), 4192–4193. https://doi.org/10.1080/23802359.2019.1693288
  41. Mao, S.L., Qiu, Z.Y., Li, Q., Li, Y. & Zhou, Y.F. (2018) Complete mitochondrial genome of Xiphidiopsis (Xiphidiopsis) gurneyi (Orthoptera, Tettigoniidae, Meconematinae). Mitochondrial DNA B Research, 3 (2), 630–631. https://doi.org/10.1080/23802359.2018.1476073
  42. Mao, S., Yuan, H., Chang, H., Shi, F. & Zhou, Y. (2020) Comparative mitochondrial genomics of Shoveliteratura triangula (Orthoptera, Tettigoniidae, Meconematinae) and the first description of a female specimen. Zootaxa, 4751 (3), 507–520. https://doi.org/10.11646/zootaxa.4751.3.5
  43. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., von Haeseler, A. & Lanfear, R. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37 (5), 1530–1534. https://doi.org/10.1093/molbev/msaa015
  44. Mirarab, S. & Warnow, T. (2015) ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics, 31 (12), i44–i52. https://doi.org/10.1093/bioinformatics/btv234
  45. Mugleston, J.D. (2016) The Tettigoniidae (Orthoptera: Ensifera): Phylogeny, Origins, and Leaf-Like Crypsis. PhD dissertation, Brigham Young University, BYU ScholarsArchive. Available from: http://hdl.lib.byu.edu/1877/etd8862 (accessed 2 December 2024)
  46. Mugleston, J.D., Naegle, M., Song, H. & Whiting, M.F. (2018) A Comprehensive Phylogeny of Tettigoniidae (Orthoptera: Ensifera) Reveals Extensive Ecomorph Convergence and Widespread Taxonomic Incongruence. Insect Systematics and Diversity, 2 (4), 5. https://doi.org/10.1093/isd/ixy010
  47. Mugleston, J.D., Otte, D. & Whiting, M.F. (2013) A Century of Paraphyly: A Molecular Phylogeny of Katydids (Orthoptera: Tettigoniidae) Supports Multiple Origins of Leaf-Like Wings. Molecular Phylogenetics and Evolution, 69 (3), 860–874. https://doi.org/10.1016/j.ympev.2013.07.014
  48. Mugleston, J., Naegle, M., Song, H., Bybee, S.M., Ingley, S., Suvorov, A. & Whiting, M.F. (2016) Reinventing the leaf: multiple origins of leaf-like wings in katydids (Orthoptera: Tettigoniidae). Invertebrate Systematics, 30 (4), 335–352. https://doi.org/10.1071/IS15055
  49. Netesova, C. & Blinov, A. (2007) Sequences of second subunit of mitochondrial gene cytochrome oxidase for Orthoptera, Ensifera. GenBank Direct Submission, Molecular Evolution, Institute of Cytology and Genetics, Lavrentyeva Street, 10, Novosibirsk 630090, Russia. Submitted on 24 April 2007. Available from: https://www.ncbi.nlm.nih.gov/nuccore/EF576653 (accessed 1 August 2024)
  50. Öztürk, P.N. & Çıplak, B. (2019) Phylomitogenomics of Phaneropteridae (Orthoptera): Combined data indicate a poorly conserved mitogenome. International Journal of Biological Macromolecules, 132, 1318–1326. https://doi.org/10.1016/j.ijbiomac.2019.04.011
  51. Pang, S., Zhang, Q., Liang, L., Qin, Y., Li, S. & Bian, X. (2024) Comparative Mitogenomics and Phylogenetic Implications for Nine Species of the Subfamily Meconematinae (Orthoptera: Tettigoniidae). Insects, 15 (6), 413. https://doi.org/10.3390/insects15060413
  52. Plazzi, F., Ricci, A. & Passamonti, M. (2011) The mitochondrial genome of Bacillus stick insects (Phasmatodea) and the phylogeny of orthopteroid insects. Molecular Phylogenetics and Evolution, 58, 304–316. https://doi.org/10.1016/j.ympev.2010.12.005
  53. Rentz, D.C.F. (1993) The Austrosaginae, Zaprochilinae and Phasmodinae. In: A Monograph of the Tettigoniidae of Australia. Vol. 2. CSIRO press, Melbourne, pp. 1–386. [http://hdl.handle.net/102.100.100/245321?index=1]
  54. Roberti, M., Polosa, P.L., Bruni, F., Musicco, C., Gadaleta, M.N. & Cantatore, P. (2003) DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA. Nucleic Acids Research, 31, 1597–1604. https://doi.org/10.1093/nar/gkg272
  55. Saussure, H. (1888) Synopsis de la tribu des Sagiens. Orthoptères de la famille des Locustides. Annales de la Société Entomologique de France, 8, 127–160.
  56. Shan, Z., Wanjing, Y., Yuxiang, C., Pingjia, Q., Peng, L., Rong, H. & Peng, C. (2020) Mitogenome of Teratura megafurcula. GenBank Direct Submission. Research Center, Chengdu Research Base of Giant Panda Breeding, No. 1375 Panda Avenue, Waibei, Chengdu, Chenghua District, Chengdu, SiChuan 610086, China. Submitted on 15 July 2020. Available from: https://www.ncbi.nlm.nih.gov/nuccore/MT767744 (accessed 1 August 2024)
  57. Sheffield, N.C., Song, H., Cameron, S.L. & Whiting, M.F. (2008) A comparative analysis of mitochondrial genomes in Coleoptera (Arthropoda: Insecta) and genome descriptions of six new beetles. Molecular Biology and Evolution, 25, 2499–2509. https://doi.org/10.1093/molbev/msn198
  58. Song, H., Amédégnato, C., Cigliano, M.M., Desutter-Grandcolas, L., Heads, S.W., Huang, Y., Otte, D. & Whiting, M.F. (2015) 300 million years of diversification: elucidating the patterns of orthopteran evolution based on comprehensive taxon and gene sampling. Cladistics, 31, 621–651. https://doi.org/10.1111/cla.12116
  59. Song, H., Béthoux, O., Shin, S., Donath, A., Letsch, H., Liu, S., McKenna, D.D., Meng, G., Misof, B., Podsiadlowski, L., Zhou, X. & Wipfler, B. (2020) Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nature Communications, 11(1), 4939. Erratum in: Nature Communications, 11 (1), 5674. https://doi.org/10.1038/s41467-020-19626-8
  60. Song, H., Moulton, M.J. & Whiting, M.F. (2014) Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta). PLoS One, 9 (10), e110508. https://doi.org/10.1371/journal.pone.0110508
  61. Stål, C. (1855) Nya Orthoptera. Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlinger, 12, 348–353.
  62. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30 (9), 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  63. Tang, M., Tan, M., Meng, G., Yang, S., Su, X., Liu, S., Song, W., Li, Y., Wu, Q., Zhang, A. & Zhou, X. (2014) Multiplex sequencing of pooled mitochondrial genomes—a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Research, 42 (22), e166. https://doi.org/10.1093/nar/gku917
  64. Vences, M., Miralles, A., Brouillet, S., Ducasse, J., Fedosov, A., Kharchev, V., Kostadinov, I., Kumari, S., Patmanidis, M.D., Scherz, M.D., Puillandre, N. & Renner, S.S. (2021) iTaxoTools 0.1: Kickstarting a specimen-based software toolkit for taxonomists. Megataxa, 6, 77–92. https://doi.org/10.11646/megataxa.6.2.1
  65. Wang, J., Qiu, Z., Yuan, H. & Huang, Y. (2016) The complete mitochondrial genomes of two Phaneroptera species (Orthoptera: Tettigoniidea) and comparative analysis of mitochondrial genomes in Orthoptera. GenBank Direct Submission, Shaanxi Normal University, College of Life Sciences, Xi’an, Shaanxi, China. Submitted on 8 December 2016. Available from: https://www.ncbi.nlm.nih.gov/nuccore/NC_034756 (accessed 1 August 2024)
  66. Wang, P., Zhi, Y. & Zhang, D. (2013) Sequencing and analysis of Gryllotalpa unispina mitochondrial genome. GenBank Direct Submission, College of Life Sciences, Hebei University, Baoding, Hebei, China. Submitted on 11 April 2013. Available from: https://www.ncbi.nlm.nih.gov/nuccore/KC894752 (accessed 1 August 2024)
  67. Wang, Y., Zhan, H., Lv, X., Li, B. & Yang, X. (2021) The complete mitochondrial genome of Tachycines (Gymnaeta) zorzini (Orthoptera: Rhaphidophoridae). Mitochondrial DNA B Resources, 6 (3), 1173–1174. https://doi.org/10.1080/23802359.2021.1901624
  68. Warren, B.H., Baudin, R., Franck, A., Hugel, S. & Strasberg, D. (2016) Predicting where a radiation will occur: Acoustic and molecular surveys reveal overlooked diversity in Indian Ocean Island crickets (Mogoplistinae: Ornebius). PLoS One, 11 (2), e0148971. [Erratum in: PLoS One, 11 (4), 14 April 2016] https://doi.org/10.1371/journal.pone.0148971
  69. Yang, J., Ye, F. & Huang, Y. (2016) Mitochondrial genomes of four katydids (Orthoptera: Phaneropteridae): New gene rearrangements and their phylogenetic implications. Gene, 575, 702–711. https://doi.org/10.1016/j.gene.2015.09.052
  70. Yang, M. R., Zhou, Z.J., Chang, Y.L. & Zhao, L.H. (2012) The mitochondrial genome of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). Journal of Genetics, 91 (2), 141–153. https://doi.org/10.1007/s12041-012-0157-3
  71. Yuan, H., Huang, Y., Mao, Y., Zhang, N., Nie, Y., Zhang, X., Zhou, Y. & Mao, S. (2021) The Evolutionary Patterns of Genome Size in Ensifera (Insecta: Orthoptera). Frontiers in Genetics, 12, 693541. https://doi.org/10.3389/fgene.2021.693541
  72. Zhou, Z., Huang, Y., Shi, F. & Ye, H. (2009) The complete mitochondrial genome of Deracantha onos (Orthoptera: Bradyporidae). Molecular Biology Reports, 36, 7–12. https://doi.org/10.1007/s11033-007-9145-8
  73. Zhou, Z., Yang, M., Chang, Y. & Shi, F. (2013) Comparative analysis of mitochondrial genomes of two long-legged katydids (Orthoptera: Tettigoniidae). Acta Entomologica Sinica, 56 (1), 408–418.
  74. Zhou, Z., Zhao, L., Liu, N., Guo, H., Guan, B., Di, J. & Shi, F. (2017) Towards a higher-level Ensifera phylogeny inferred from mitogenome sequences. Molecular Phylogenetics and Evolution, 108, 22–33. https://doi.org/10.1016/j.ympev.2017.01.014