Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-01-15
Page range: 477-492
Abstract views: 53
PDF downloaded: 3

Margaropus Karsch, 1879 is not closely related to Boophilus Curtice, 1891 (Acari: Ixodidae)

Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia; Laboratory of Parasitology; Faculty of Veterinary Medicine; Hokkaido University; Hokkaido 060–0818; Japan
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia; School of Rural Medicine in the Faculty of Medicine and Health; University of New England; Armidale; NSW 2351; Australia
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia
Department of Parasitology; School of Chemistry and Molecular Biosciences; The University of Queensland; Brisbane; Qld; 4072; Australia; Laboratory of Parasitology; Faculty of Veterinary Medicine; Hokkaido University; Hokkaido 060–0818; Japan
Laboratory of Parasitology; Faculty of Veterinary Medicine; Hokkaido University; Hokkaido 060–0818; Japan; Division of Parasitology; Veterinary Research Unit; International Institute for Zoonosis Control; Hokkaido University; Hokkaido 001–0200; Japan
US National Tick Collection; Institute for Coastal Plain Sciences; Georgia Southern University; Statesboro; GA; 30460; USA; Department of Biology; Georgia Southern University; Statesboro; GA; 30460; USA
Acari taxonomy phylogeny

Abstract

Margaropus Karsch, 1879 and Boophilus Curtice, 1891 have been thought to be sister-taxa for over 75 years since these ticks share features like circular spiracles, no festoons, no distinct grooves behind the anus and one-host life cycles. We inferred the first phylogeny with Margaropus from 4,218 bp of mitochondrial (cox 1, 12S) and nuclear DNA (ITS2, 18S rRNA). Margaropus is not the sister-group to Boophilus or even closely related to Boophilus, but rather Margaropus is either the sister-group to, or embedded in, the genus Rhipicephalus.

 

References

  1. Bakkes, D.K., Matloa, D.E., Mans, B. & Matthee, C.A. (2022) Their young bite better: on- and off-host selection pressure as drivers for evolutionary-developmental modification in Rhipicephalus ticks. Arthropod Structure & Development, 70, 101189. https://doi.org/10.1016/j.asd.2022.101189
  2. Barker, S.C. (1998) Distinguishing species and populations of rhipicephaline ticks with ITS 2 ribosomal RNA. Journal of Parasitology, 84, 887–892. https://doi.org/10.2307/3284614
  3. Barker, S.C. & Murrell, A. (2002) Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress. Experimental & Applied Acarology, 28, 55–68. https://doi.org/10.1023/A:1025333830086
  4. Barker, S.C. & Walker, A.R. (2014) Ticks of Australia. The species that infest domestic animals and humans. Zootaxa, 3816, (1) 1–144. https://doi.org/10.11646/zootaxa.3816.1.1
  5. Barker, S.C. & Barker, D. (2023) Ticks of Australasia: 125 species of ticks in and around Australia. Zootaxa, 5253 (1), 1–670. https://doi.org/10.11646/zootaxa.5253.1.1
  6. Barker, S.C., Kelava, S., Heath, A.C.G., Seeman, O.D., Apanaskevich, D.A., Mans, B.J., Shao, R., Gofton, A.W., Teo, E.J.M., Byrne, A. F., Ito, T., Tan, C.J., Barker, D. & Nakao, R. (2023) A new subgenus, Australixodes n. subgen. (Acari: Ixodidae), for the kiwi tick, Ixodes anatis Chilton, 1904, and validation of the subgenus Coxixodes Schulze, 1941 with a phylogeny of 16 of the 22 subgenera of Ixodes Latreille, 1795 from entire mitochondrial genome sequences. Zootaxa, 5325 (4), 529–540. https://doi.org/10.11646/zootaxa.5325.4.4
  7. Barker, S.C., Kelava, S., Mans, B.J., Apanaskevich, D.A., Seeman, O.D., Gofton, A., Shao, R., Teo, E.J.M., Evasco, K.L., Soennichsen, K.F., Barker, D. & Nakao, R. (2024) The first cryptic genus of Ixodida, Cryptocroton n. gen. for Amblyomma papuanum Hirst, 1914: a tick of North Queensland, Australia, and Papua New Guinea. Zootaxa, 5410 (1), 91–111. https://doi.org/10.11646/zootaxa.5410.1.5
  8. Burger, T.D., Shao, R., Labruna, M.B. & Barker, S.C. (2014a) Molecular phylogeny of soft ticks (Ixodida: Argasidae) inferred from mitochondrial genome and nuclear rRNA sequences. Ticks & Tick-borne Diseases, 5, 195–207. https://doi.org/10.1016/j.ttbdis.2013.10.009
  9. Burger, T.D., Shao, R. & Barker, S.C. (2014b) Phylogenetic analysis of mitochondrial genome sequences indicates that the cattle tick, Rhipicephalus (Boophilus) microplus, contains a cryptic species. Molecular Phylogenetics & Evolution, 76, 241–253. https://doi.org/10.1016/j.ympev.2014.03.017
  10. Capella-Gutiérrez, S., Silla-Martínez, J.M. & Gabaldón, T. (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, 25, 1972–1973. https://doi.org/10.1093/bioinformatics/btp348
  11. Crampton, A., McKay, I. & Barker, S.C. (1996) Phylogeny of ticks (Ixodida) inferred from nuclear ribosomal DNA. International Journal for Parasitology, 52, 511–517.
  12. Dobson, S.J. & Barker, S.C. (1999). Phylogeny of the hard ticks (Ixodidae) inferred from 18S rRNA indicates that the genus Aponomma is paraphyletic. Molecular Phylogenetics & Evolution, 11, 288-295.
  13. Domanico, M.J., Phillips, R.B. & Oakley, T.H. (1997) Phylogenetic analysis of Pacific salmon (genus Oncorhynchus) using nuclear and mitochondrial DNA sequences. Canadian Journal of Fisheries & Aquatic Sciences, 54, 1865–1972.
  14. Filippova, N.A. (1994) Classification of the subfamily Amblyomminae (Ixodidae) in connection with re-investigation of chaetotaxy of the anal valve. Parazitologiia, 28, 3–12.
  15. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2017) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology & Evolution, 35, 518–522.
  16. Hoogstraal, H. (1956) African Ixodoidea. I. Ticks of the Sudan (with special reference to Equatoria Province and with preliminary reviews of the genera Boophilus, Margaropus and Hyalomma). Research Report NM 005 050.29.07. Department of the Navy, Bureau of Medicine and Surgery, Washington, D.C., 1101 pp.
  17. Kelava, S., Mans, B.J., Shao, R., Moustafa, M.A.M., Matsuno, K., Takano, A., Kawabata, H., Sato, K., Fujita, H., Ze, C., Plantard, O., Hornok, S., Gao, S., Barker, D., Barker, S.C. & Nakao, R. (2021) Phylogenies from mitochondrial genomes of 120 species of ticks: insights into the evolution of the families of ticks and of the genus Amblyomma. Ticks & Tick-borne Diseases, 12, 101577. https://doi.org/10.1016/j.ttbdis.2020.101577
  18. Kelava, S., Mans, B.J., Shao, R., Barker, D., Teo, E.J.M., Chatanga, E., Gofton, A.W., Moustafa, M.A.M., Nakao, R. & Barker, S.C. (2023) Seventy-eight entire mitochondrial genomes and nuclear rRNA genes provide insight into the phylogeny of the hard ticks, particularly the Haemaphysalis species, Africaniella transversale and Robertsicus elaphensis. Ticks &Tick-borne Diseases, 14, 102070. https://doi.org/10.1016/j.ttbdis.2022.102070
  19. Kelava, S., Mans, B.J., Shao, R., Moustafa, M.A.M., Matsuno, K., Takano, A., Kawabata, H., Sato, K., Fujita, H., Ze, C., Plantard, O., Hornok, S., Gao, S., Barker, D., Barker, S.C. & Nakao, R. (2021) Phylogenies from mitochondrial genomes of 120 species of ticks: insights into the evolution of the families of ticks and of the genus Amblyomma. Ticks & Tick-borne Diseases, 12, 101688. https://doi.org/10.1016/j.ttbdis.2020.101577
  20. Klompen, J.S.H., Oliver, J.H., Keirans, J.E. & Homsher, P.J. (1997) A re-evaluation of relationships in the Metastriata (Acari: Parasitiformes: Ixodidae). Systematic Parasitology, 38, 1–24. https://doi.org/10.1023/A:1005815925466
  21. Lanfear, R., Frandsen, P.B., Wright, A.M., Senfeld, T. & Calcott, B. (2016) PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology & Evolution, 34, 772–773. https://doi.org/10.1093/molbev/msw260
  22. Li, H. (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100. https://doi.org/10.1093/bioinformatics/bty191
  23. Lowe, T.M. & Chan, P.P. (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Research, 44, W54–W57. https://doi.org/10.1093/nar/gkw413
  24. Mans, B., Featherston, J., Kvas, M., Pillay, K.A., de Klerk, D.G., Pienaar, R., de Castro, M.H., Schwan, T.G., Lopez, J.E., Teel, P., de Leon, A.A.P., Sonenshine, D.E., Egekwu, N.I., Bakkes, D.K., Heyne, H., Kanduma, E.G., Nyangiwe, N., Bouattour, A. & Latif, A.A. (2019) Argasid and ixodid systematics: implications for soft tick evolution and systematics, with a new argasid species list. Ticks & Tick-borne Diseases, 10, 219–240. https://doi.org/10.1016/j.ttbdis.2018.09.010
  25. Mans, B.J., Kelava, S., Pienaar, R., Featherston, J., de Castro, M.H., Quetglas, J., Reeves, W.K., Durden, L.A., Miller, M.M., Laverty, T.M., Shao, R., Takano, A., Kawabata, H., Moustafa, M.A.M., Nakao, R., Matsuno, K., Greay, T.L., Evasco, K.L., Barker, D. & Barker, S.C. (2021) Nuclear (18S-28S rRNA) and mitochondrial genome markers of Carios (Carios) vespertilionis (Argasidae) support Carios Latreille, 1796 as a lineage embedded in the Ornithodorinae: re-classification of the Carios sensu Klompen and Oliver (1993) clade into its respective subgenera. Ticks & Tick-borne Diseases, 12, 101688. https://doi.org/10.1016/j.ttbdis.2021.101688
  26. Murrell, A., Campbell, N. & Barker, S. (1999) Mitochondrial 12S rDNA indicates that the Rhipicephalinae (Acari : Ixodida : Ixodidae) is paraphyletic. Molecular Phylogenetics & Evolution, 12, 83–86. https://doi.org/10.1006/mpev.1998.0595
  27. Murrell, A. & Barker, S. (2003) Synonymy of Boophilus Curtice, 1891 with Rhipicephalus Koch, 1844 (Acari : Ixodidae). Systematic Parasitology, 56, 169–172.
  28. Pomerantzev, B.I. (1948) New ticks of the family Ixodidae. Parazitologicheskii Sbornik, 10, 20–24. [in Russian]
  29. Rambaut, A. (2009) Tracer. Version 1. 5. Available from: http://tree.bio.ed.ac.uk/software/tracer/ (accessed 17 November 2024)
  30. Rambaut, A. (2012) FigTree. Version 1.4. Available from: http://tree.bio.ed.ac.uk/software/FigTree/ (accessed 17 November 2024)
  31. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542. https://doi.org/10.1093/sysbio/sys029
  32. Shao, R. & Barker, S.C. (2007) Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology, 134, 153–167.
  33. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033
  34. Walker, J.B. & Laurence, B.R. (1973) Margaropus wileyi sp. nov. (Ixodoidea: Ixodidae). A new species from the reticulated giraffe. Onderstepoort Journal of Veterinary Research, 40, 13–22.
  35. Walker, A.R., Bouattour, A., Camicas, J.L., Estrada-Peña, A., Horak, I.G., Latif, A.A., Pegram, R.G. & Preston, P.M. (2003) Ticks of Domestic Animals in Africa: a Guide to Identification of Species. Biosciences Report, Edinburgh, 221 pp.