Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-04
Page range: 491-508
Abstract views: 138
PDF downloaded: 8

Two new species of eelpout genus Lycenchelys (Perciformes: Zoarcidae) from the Kuril-Kamchatka Trench, based on morphological and molecular evidence

Independent researcher; Lübeck; Germany
biome-id GbR; c/o Jade InnovationsZentrum; Emsstraße 20; 26382 Wilhelmshaven; Germany
Zoological Institute of the Russian Academy of Sciences (ZIN); St. Petersburg; Russia
Independent researcher; Hamburg; Germany
Pisces Lycodinae morphology DNA barcoding deep sea Kuril Islands Bussol Strait Simushir Island

Abstract

Two new species of eelpout genus Lycenchelys Gill, 1884 are described based on eight specimens caught at a depth between 3517 and 3580 m at the western slope of the upper margin of the Kuril-Kamchatka Trench, relatively close to the Bussol Strait and Simushir Island in the center of the Kuril Islands chain. Lycenchelys delanglei sp. nov. differs from its congeners by the following combination of characters: vertebrae 28–29 + 91–93 = 120–121; interorbital and occipital pores absent; postorbital pores 4; suborbital pores 10–12; preoperculomandibular pores 4 + 5; gill rakers 11–16; dorsal-fin rays 114–117, 2–3 free pterygiophores at the beginning of dorsal fin; anal-fin rays 96–98; pelvic-fin rays 2; pectoral-fin rays 16–17, ray tips of the pectoral fin exserted, especially the middle and lower ones; lateral line absent; pyloric caeca not developed. Lycenchelys renatae sp. nov. differs from its congeners by the following combination of characters: vertebrae 26–27 + 99–103 = 125–130; interorbital pores 0–1; occipital pores absent; postorbital pores 1–4; suborbital pores 6–9; preoperculomandibular pores 3–4 + 5; gill rakers 13–15; dorsal-fin rays 115–122, 1–3 free pterygiophores at the beginning of dorsal fin; anal-fin rays 102–106; pelvic-fin rays two; pectoral-fin rays 16–17, ray tips of the pectoral fin exserted, the middle and lower ones more so than the upper ones; lateral line mediolateral, poorly developed; pyloric caeca not developed.

For each of the two described new species four mitochondrial COI sequences were analysed and share the same haplotype within species. The obtained DNA barcodes allowed discrimination of L. delanglei sp. nov. and L. renatae sp. nov. from each other and exhibit a genetic distance of 2,61%. The closest match of L. delanglei sp. nov. with already published sequences was Lycenchelys lenzeni with a sequence similarity of 98.47%, whereas the closest match of L. renatae sp. nov. with already published sequences was Lycenchelys jordani with a similarity of 98.62%.

A new analysis of radiographs of the type specimens confirmed that L. birsteini should be considered as synonym of L. plicifera, especially due to similar numbers of free pterygiophores at the beginning of dorsal fin.

 

References

  1. Anderson, M.E. (1982) Revision of the fish genera Gymnelus Reinhardt and Gymnelopsis Soldatov (Zoarcidae), with two new species and comparative osteology of Gymnelus viridis. National Museum of Natural Sciences, Publications in Zoology, 17, 1–76.
  2. Anderson, M.E. (1990) Zoarcidae. In: Gon, O. & Heemstra, P.C. (Eds.), Fishes of the Southern Ocean. J.L.B. Smith Institute of Ichthyology, Grahamstown, South Africa, pp. 256–276.
  3. Anderson, M.E. (1994) Systematics and osteology of the Zoarcidae (Teleostei: Perciformes). J.L.B. Smith Institute of Ichthyology, Ichthyological Bulletin, 60, 1–120.
  4. Anderson, M.E. (1995) The eelpout genera Lycenchelys Gill and Taranetzella Andriashev (Teleostei: Zoarcidae) in the eastern Pacific, with descriptions of nine new species. Proceedings of the California Academy of Sciences, 49 (2), 55–113.
  5. Anderson, M.E. & Balanov, A.A. (2000) Lycenchelys fedorovi: a new species of eelpout (Teleostei: Zoarcidae) from the northwestern Pacific Ocean. Copeia, 2000 (4), 1056–1061. https://doi.org/10.1643/0045-8511(2000)000[1056:LFANSO]2.0.CO;2
  6. Anderson, M.E. & Imamura, H. (2002) A new species of Lycenchelys (Perciformes: Zoarcidae) from the Pacific coast of northern Japan. Ichthyological Research, 49 (4), 355–357. https://doi.org/10.1007/s102280200053
  7. Andriashev, A.P. (1955) A review of the fishes of the genus Lycenchelys Gill (Pisces, Zoarcidae) and related forms in the seas of the USSR and adjacent waters. Trudy Instituta Zoologii / Akademiia Nauk, Azerbaidzhanskoi SSR, 18, 349–384. [In Russian].
  8. Andriashev, A.P. (1958) An addition to the review of the fishes of the genus Lycenchelys Gill with descriptions of three new species from the Kuril-Kamchatka Trench. Voprosy Ikhtiologii, 11, 171–180. [In Russian].
  9. Chernova, N., Thiel, R. & Eidus, I. (2020) Four new species of Careproctus (Cottoidei: Liparidae) from the deep-water vicinity of the southern Kuril Islands (Western North Pacific). Zootaxa, 4821 (1), 71–87. https://doi.org/10.11646/zootaxa.4821.1.3
  10. Edgar, R.C. (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797. https://doi.org/10.1093/nar/gkh340
  11. Fedorov, V.V. (1995a) Lycenchelys parini sp. nova (Perciformes: Zoarcidae) from the bathyal region of the Kuril-Kamchatka Trench. Journal of Ichthyology, 35 (4), 130–134.
  12. Fedorov, V.V. (1995b) Lycenchelys remissaria sp. nova (Perciformes: Zoarcidae) from the bathyal region of the ocean shores of Japan. Journal of Ichthyology, 35 (4), 135–139.
  13. Fedorov, V.V. & Andriashev, A.P. (1993) Lycenchelys makushok sp. nova (Perciformes, Zoarcidae) from bathyal depths of the Kuril-Kamchatka Trench. Journal of Ichthyology, 33 (5), 130–135.
  14. Gosztonyi, A.E. (1977) Results of the research cruises of FRV “Walther Herwig” to South America. XLVIII. Revision of the South American Zoarcidae (Osteichthyes, Blennioidei), with the description of three new genera and five new species. Archiv für Fischereiwissenschaft, 27, 191–249.
  15. Ivanova, N.V., Zemlak, T.S., Hanner, R. & Hebert, P.D.N. (2007) Universal primer cocktails for fish DNA barcoding. Molecular Ecology Notes, 7, 544–548. https://doi.org/10.1111/j.1471-8286.2007.01748.x
  16. Kamenev, G.M. (2018) Bivalve molluscs of the abyssal zone of the Sea of Okhotsk: Species composition, taxonomic remarks, and comparison with the abyssal fauna of the Pacific Ocean. Deep-Sea Research Part II, 154 (2018), 230–248. https://doi.org/10.1016/j.dsr2.2017.10.006
  17. Kamenev, G.M., Mordukhovich, V.V., Alalykina, I.L., Chernyshev, A.V. & Maiorova, A.S. (2022) Macrofauna and Nematode Abundance in the Abyssal and Hadal Zones of Interconnected Deep-Sea Ecosystems in the Kuril Basin (Sea of Okhotsk) and the Kuril-Kamchatka Trench (Pacific Ocean). Frontiers in Marine Science, 9, 812464. https://doi.org/10.3389/fmars.2022.812464
  18. Kawarada, S., Imamura, H., Narimatsu, Y. & Shinohara, G. (2020) Taxonomic revision of the genus Lycenchelys (Osteichthyes: Zoarcidae) in Japanese waters. Zootaxa, 4762 (1), 1–66. https://doi.org/10.11646/zootaxa.4762.1.1
  19. Knebelsberger, T. & Stöger, I. (2012) DNA extraction, preservation, and amplification. In: Kress, W.J. & Erickson, D.L. (Eds.) DNA barcodes: methods and protocols. Berlin: Springer Science+Business Media, LLC 2012, Methods in Molecular Biology, 858, 311–338. https://doi.org/10.1007/978-1-61779-591-6_14
  20. Morgulis, A., Coulouris, G., Raytselis, Y., Madden, T.L., Agarwala, R. & Schäffer, A.A. (2008) Database Indexing for Production MegaBLAST Searches, Bioinformatics, 24, 1757–1764. https://doi.org/10.1093/bioinformatics/btn322
  21. NOAA National Centers for Environmental Information (2022) ETOPO 2022 60 Arc-Second Global Relief Model. NOAA National Centers for Environmental Information. https://doi.org/10.25921/fd45-gt74
  22. Parin, N.V., Evseenko, S.А. & Vasil’eva, Е.D. (2014) Fishes of Russian Seas: Annotated Catalogue. Archives of the Zoological Museum of Moscow Lomonosov State University. Vol. 53. KMK Scientific Press, Moscow, 733 pp.
  23. Priede, I.G. (2017) Deep-sea fishes: biology, diversity, ecology and fisheries. Cambridge University Press, Cambridge, United Kingdom, 279 pp. https://doi.org/10.1017/9781316018330
  24. Ratnasingham, S. & Hebert, P.D.N. (2007) BOLD: the barcode of life data system. Molecular Ecology Notes, 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x
  25. Shinohara, G. & Anderson, M.E. (2007) Lycenchelys ryukyuensis sp. nov. (Perciformes: Zoarcidae) from the Okinawa Trough, Japan. Bulletin of the National Museum of Nature and Science, Series A (Zoology), Supplement 1, 59–66.
  26. Shinohara, G. & Matsuura, K. (1998) A new zoarcid, Lycenchelys aurantiaca, from the Pacific coast off northern Japan (Teleostei: Perciformes). Ichthyological Research, 45 (2), 151–155. https://doi.org/10.1007/BF02678557
  27. Shinohara, G., Nazarkin, M.V. & Narimatsu, Y. (2022) Taxonomic review of the rare deep-sea eelpout, Lycenchelys maculata (Pisces, Zoarcidae). Bulletin of the National Museum of Nature and Science, Ser. A, 48 (4), 215–227. https://doi.org/10.50826/bnmnszool.48.4_215
  28. Tamura, K., Stecher, G. & Kumar, S (2021) MEGA11: Molecular Evolutionary Genetics Analysis version 11. Molecular Biology and Evolution, 38, 3022–3027. https://doi.org/10.1093/molbev/msab120
  29. Thiel, R., Knebelsberger, T. & Eidus, I. (2018) Description and DNA barcoding of Lycenchelys lenzeni, a new species of eelpout (Perciformes: Zoarcidae) from the deep sea off the Kuril Archipelago. Zootaxa, 4370 (1), 45–56. https://doi.org/10.11646/zootaxa.4370.1.3
  30. Toyoshima, M. (1983) Zoarcidae. In: Amaoka, K., Nakaya, K., Araya, H. &Yasui, T. (Eds.) Fishes from the north-eastern Sea of Japan and the Okhotsk Sea off Hokkaido. The intensive research of unexploited fishery resources on continental slopes. Japan Fisheries Resource Conservation Association, Tokyo, pp. 136–149, 208–210, 258–277, 329–355.
  31. Toyoshima, M. (1985) Taxonomy of the subfamily Lycodinae (family Zoarcidae) in Japan and adjacent waters. Memoirs of the Faculty of Fisheries, Hokkaido University, 32, 131–243.
  32. Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. (2000) A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1–2), 203–14. https://doi.org/10.1089/10665270050081478