Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-04
Page range: 567-578
Abstract views: 50
PDF downloaded: 23

Obtusitermes monomorphus, a new termite species (Isoptera: Termitidae: Nasutitermitinae) from Panama

Fort Lauderdale Research and Education Center; University of Florida; Institute of Food and Agricultural Sciences; 3205 College Avenue; Davie; Florida; 33314; USA
Behavioral and Evolutionary Ecology; CP 160/12; Université Libre de Bruxelles; Av. F.D. Roosevelt 50; B—1050 Brussels; Belgium
Essig Museum of Entomology; 1101 VLSB #4780; Berkeley; California; 94720; USA
Okinawa Institute of Science & Technology Graduate University; 1919-1 Tancha; Onna-son; 904-0495 Okinawa; Japan
Okinawa Institute of Science & Technology Graduate University; 1919-1 Tancha; Onna-son; 904-0495 Okinawa; Japan
Isoptera monomorphic second proctodeal segment enteric valve armature Obtusitermes panamae Obtusitermes formosulus

Abstract

Obtusitermes monomorphus sp. nov. is described from the monomorphic soldier and worker castes. The two described congeners, O. panamae (Snyder, 1924) and O. formosulus Cuezzo and Cancello, 2009 both have dimorphic soldiers and workers. It is now demonstrated that the major worker hindgut of all three Obtusitermes species are unique among other termite taxa in due to the first proctodeal segment connected to the third proctodeal segment by a very long and tubular enteric valve (second proctodeal segment) with weak armature at both ends and a curvature of 180°. Additionally, Obtusitermes monomorphus is compared with other small monomorphic nasutitermitines of Panama.

 

References

  1. Allio, R., Schomaker-Bastos, A., Romiguier, J., Prosdocimi, F., Nabholz, B. & Delsuc, F. (2020) MitoFinder: efficient automated large-scale extraction of mitogenomic data in target enrichment phylogenomics. Molecular Ecology Resources, 20, 892–905. https://doi.org/10.1111/1755-0998.13160
  2. Andrew, W. & Andrew, N. (1953) A visit to Barro Colorado Island. The Scientific Monthly, 77, 227–232.
  3. Arora, J., Buček, A., Hellemans, S., Beránková, T., Romero Arias, J., Fisher, B.L., Clitheroe, C., Brune, A., Kinjo, Y., Šobotník, J. & Bourguignon, T. (2023) Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proceedings of the Royal Society B, 290, 20230619. https://doi.org/10.1098/rspb.2023.0619
  4. Banks, N. (1918) The termites of Panama and British Guiana. Bulletin of the American Museum of Natural History, 38, 659–667.
  5. Bourguignon, T., Lo, N., Cameron, S.L., Šobotník, J., Hayashi, Y., Shigenobu, S., Watanabe, D., Roisin, Y., Miura, T. & Evans, T.A. (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Molecular Biology and Evolution, 32, 406–421. https://doi.org/10.1093/molbev/msu308
  6. Bourguignon, T., Lo, N., Šobotník, J., Ho, S.Y.W., Iqbal, N., Coissac, É., Lee, M., Jendryka, M.M., Sillam-Dussès, D., Křížková, B., Roisin, Y. & Evans, T.A. (2017) Mitochondrial phylogenomics resolves the global spread of higher termites, ecosystem engineers of the tropics. Molecular Biology and Evolution, 34, 589–597. https://doi.org/10.1093/molbev/msw253
  7. Bourguignon, T., Lo, N., Šobotník, J., Sillam-Dussès, D., Roisin, Y. & Evans, T.A. (2016) Oceanic dispersal, vicariance and human introduction shaped the modern distribution of the termites Reticulitermes, Heterotermes and Coptotermes. Proceedings of the Royal Society B, 283, 20160179. https://doi.org/10.1098/rspb.2016.0179
  8. Cameron, S.L., Lo, N., Bourguignon, T., Svenson, G.J. & Evans, T.A. (2012) A mitochondrial genome phylogeny of termites (Blattodea: Termitoidae): robust support for interfamilial relationships and molecular synapomorphies define major clades. Molecular Phylogenetics and Evolution 65, 163–173. https://doi.org/10.1016/j.ympev.2012.05.034
  9. Chen, S., Zhou, Y., Chen, Y. & Gu, J. (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics, 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560
  10. Chernomor, O., Von Haeseler, A. & Minh, B.Q. (2016) Terrace aware data structure for phylogenomic inference from supermatrices. Systematic Biology, 65, 997–1008. https://doi.org/10.1093/sysbio/syw037
  11. Cuezzo, A.C. & Cancello, E.M. (2009) A new species of Obtusitermes (Isoptera, Termitidae, Nasutitermitinae) from South America. Zootaxa, 1993, 61–68. https://doi.org/10.11646/zootaxa.1993.1.6
  12. Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. & Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321. https://doi.org/10.1093/sysbio/syq010
  13. Hellemans, S., Šobotník, J., Lepoint, G., Mihaljevič, M., Roisin, Y. & Bourguignon, T. (2022a) Termite dispersal is influenced by their diet. Proceedings of the Royal Society B, 289, 20220246. https://doi.org/10.1098/rspb.2022.0246
  14. Hellemans, S., Wang, M., Hasegawa, N., Šobotník, J., Scheffrahn, R.H. & Bourguignon, T. (2022b) Using ultraconserved elements to reconstruct the termite tree of life. Molecular Phylogenetics and Evolution, 173, 107520. https://doi.org/10.1016/j.ympev.2022.107520
  15. Hoang, D.T., Chernomor, O., von Haeseler, A., Minh, B.Q. & Vinh, L.S. (2018) UFBoot2: improving the ultrafast bootstrap approximation. Molecular Biology and Evolution 35, 518–522. https://doi.org/10.1093/molbev/msx281
  16. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., Von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  17. Katoh, K. & Standley, D.M. (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30, 772–780. https://doi.org/10.1093/molbev/mst010
  18. Kück, P. & Longo, G.C. (2014) FASconCAT-G: extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Frontiers in Zoology, 11, 81. https://doi.org/10.1186/s12983-014-0081-x
  19. Minh, B.Q., Schmidt, H.A., Chernomor, O., Schrempf, D., Woodhams, M.D., Von Haeseler, A., Lanfear, R. & Teeling, E. (2020) IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37, 1530–1534. https://doi.org/10.1093/molbev/msaa015
  20. Noirot, C. (2001) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. II. Higher termites (Termitidae). Annales de la Société Entomologique de France, 37, 431–471.
  21. Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P.A. (2017) metaSPAdes: a new versatile metagenomic assembler. Genome Research, 27, 824–834. https://doi.org/10.1101/gr.213959.116
  22. Rice, P., Longden, L. & Bleasby, A. (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends in Genetics, 16, 276–277. https://doi.org/10.1016/S0168-9525(00)02024-2
  23. Roisin, Y. (1995) Humivorous nasute termites (Isoptera: Nasutitermitinae) from the Panama Canal area. Belgian Journal of Zoology, 125, 283–300.
  24. Scheffrahn, R.H. (2019) UF termite database. University of Florida termite collection. Available from: https://www.termitediversity.org/ (accessed 28 October 2024)
  25. Scheffrahn, R.H., Roisin, Y., Szalanski, A.L., Austin, J.W. & Duquesne, E. (2024). Expanded range of Nasutitermes callimorphus Mathews, 1977 (Isoptera: Termitidae: Nasutitermitinae), comparison with N. corniger (Motschulsky, 1855) and N. ephratae (Holmgren, 1910), and synonymy of N. dasyopsis Thorne, 1989 into N. nigriceps (Haldeman, 1854). Zootaxa, 5507 (1), 57–78. https://doi.org/10.11646/zootaxa.5507.1.2
  26. Snyder, T.E. (1924) A new subgenus of Nasutitermes Banks (Isop.). Proceedings of the Entomological Society of Washington, 26, 20–24.
  27. Snyder, T.E. (1925) New termites and hitherto unknown castes from the Canal Zone, Panama. Journal of Agricultural Research, 29, 179–193.
  28. Snyder, T.E. (1926) Five new termites from Panama and Costa Rica. Proceedings of the Entomological Society of Washington, 28, 7–16.
  29. Snyder, T.E. & Zetek, J. (1924) Damage by termites in the Canal Zone and Panama and how to prevent it. United States Department of Agriculture Bulletin, 1232, 1–26. https://doi.org/10.5962/bhl.title.108921
  30. Suyama, M., Torrents, D. & Bork, P. (2006) PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34, W609–W612. https://doi.org/10.1093/nar/gkl315
  31. Wang, M., Buček, A., Šobotník, J., Sillam-Dussès, D. Evans, T.A., Roisin, Y., Lo, N. & Bourguignon, T. (2019) Historical biogeography of the termite clade Rhinotermitinae (Blattodea: Isoptera). Molecular Phylogenetics and Evolution, 132, 100–104. https://doi.org/10.1016/j.ympev.2018.11.005
  32. Wang, M., Hellemans, S., Buček, A., Kanao, T., Arora, J., Clitheroe, C., Rafanomezantsoa, J.-J., Fisher, B.L., Scheffrahn, R., Sillam‐Dussès, D., Roisin, Y., Šobotník, J. & Bourguignon, T. (2023) Neoisoptera repeatedly colonised Madagascar after the Middle Miocene climatic optimum. Ecography, 2023, e06463. https://doi.org/10.1111/ecog.06463
  33. Wang, M., Hellemans, S., Šobotník, J., Arora, J., Buček, A., Sillam-Dussès, D., Clitheroe, C., Lu, T., Lo, N., Engel, M.S., Roisin, Y., Evans, T.A. & Bourguignon, T. (2022) Phylogeny, biogeography and classification of Teletisoptera (Blattaria: Isoptera). Systematic Entomology, 47, 581–590. https://doi.org/10.1111/syen.12548
  34. Thorne, B.L. & Levings, S.C. (1989) A new species of Nasutitermes (Isoptera: Termitidae) from Panama. Journal of the Kansas Entomological Society, 62, 342–347.