Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-07
Page range: 151-178
Abstract views: 141
PDF downloaded: 15

Diversity and phylogenetic position of the amphi-American lineages of the tapeworms of the genus Anthocephalum Linton, 1890 (Rhinebothriidea: Anthocephaliidae)

Departamento de Zoologia - Instituto de Biociências; Universidade de São Paulo; Rua do Matão; 101; travessa 14; Cidade Universitária; São Paulo; SP; 05508–090
Departamento de Zoologia - Instituto de Biociências; Universidade de São Paulo; Rua do Matão; 101; travessa 14; Cidade Universitária; São Paulo; SP; 05508–090
Departamento de Zoologia - Instituto de Biociências; Universidade de São Paulo; Rua do Matão; 101; travessa 14; Cidade Universitária; São Paulo; SP; 05508–090
Platyhelminthes Cestoda Tapeworms Taxonomy Molecular Systematics partial 18S and 28S New species Amended diagnosis Alveobothrium Biogeographic history

Abstract

Among enduringly associated parasitic taxa, tapeworms (Platyhelminthes: Cestoda), particularly the family Anthocephaliidae Ruhnke, Caira & Cox, 2015, pose challenges to systematic history of the group. Within this family, the genus Anthocephalum Linton, 1890, remains insufficiently explored despite recent advancements. This study addresses the intricate taxonomy, phylogenetic relationships, diversity, and historical biogeography of tapeworms within the Anthocephaliidae, focusing on its type-genus Anthocephalum. To accomplish this objective, 15 specimens across various geographical regions including Alagoas and Pará in Brazil, Panama, and Senegal were selected for DNA extraction. For species of Anthocephalum, partial 18S and 28S rDNA sequences were amplified via PCR, purified, and sequenced using the ABI Big-Dye method. Three specimens of Alveobothrium grabatum Boudaya, Neifar & Euzet, 2018 were sequenced through Illumina technology. Phylogenetic analyses were conducted using IQTREE2 under two optimality criteria: Maximum Parsimony (MP) and Maximum Likelihood (ML). Biogeographic ancestral range estimations were performed using the R package BioGeoBEARS, incorporating multiple biogeographical models. Our phylogenetic analyses reaffirmed Anthocephaliidae’s monophyly. However, both the relationships with or within Anthocephaliidae require further investigation. One example within the family is the positioning of Alveobothrium Boudaya, Neifar & Euzet, 2018, which challenged Anthocephalum’s monophyly requiring taxonomic actions. Furthermore, when exploring new localities and/or new hosts for Anthocephalum, four independent lineages were identified, suggesting that Anthocephalum’s diversity remains underestimated especially in unexplored regions and hosts. About the biogeographic ancestral range estimation, the analysis suggested a Central Indo-Pacific origin for early Anthocephalum lineages, with subsequent colonization events shaping the current diversity. The preliminary biogeographical framework presented here underscores the importance of refining phylogenetic hypotheses and enhancing taxonomic understanding. As taxonomic actions taken, the four new lineages were formally described and the genus Alveobothrium was synonymized with Anthocephalum, for which we proposed an amended diagnosis. This revision brings the total number of valid species of Anthocephalum to 30. Therefore, we suggest that future research initiatives should prioritize time-calibrated analyses, multiple genetic loci, and broader taxonomic representation for a detailed exploration of systematic history of anthocephaliid’s.

 

References

  1. Baraf, L.M., Pratchett, M.S. & Cowman, P.F. (2019) Ancestral biogeography and ecology of marine angelfishes (F: Pomacanthidae). Molecular Phylogenetics and Evolution, 140, 1–13. https://doi.org/10.1016/j.ympev.2019.106596
  2. Barber, P.H. & Bellwood, D.R. (2005) Biodiversity hotspots: evolutionary origins of biodiversity in wrasses (Halichoeres: Labridae) in the indo-pacific and new world tropics. Molecular Phylogenetics and Evolution, 35 (1), 235–253. https://doi.org/10.1016/j.ympev.2004.10.004
  3. Boudaya, L., Neifar, L. & Euzet, L. (2018) A new genus and three new species of Anthocephaliidae (Cestoda, Rhinebothriidea) from the round fantail stingray, Taeniurops grabata (Chondrychthyes, Dasyatidae) from the Mediterranean Sea and Atlantic Ocean. Journal of Helminthology, 94 (e11), 1–11. https://doi.org/10.1017/S0022149X18001025
  4. Bush, A.O., Lafferty, K.D., Lotz, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. The journal of parasitology, 83 (4), 575–583. https://doi.org/10.2307/3284227
  5. Caira, J.N., Jensen, K., Waeschenbach, A., Olson, P.D. & Littlewood, D.T.J. (2014) Orders out of chaos—molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. International Journal of Parasitology, 44, 55–73. https://doi.org/10.1016/j.ijpara.2013.10.004
  6. Caira, J.N. & Jensen, K. (2014) A digest of elasmobranch tapeworms. The Journal of Parasitology, 100 (4), 373–391. https://doi.org/10.1645/14-516.1
  7. Caira, J.N, Jensen, K., Georgiev, B., Kuchta, R., Littlewood, D.T.J., Mariaux, J., Scholz, T., Tkach, V. & Waeschenbach, A. (2017a) An overview of tapeworms from vertebrate bowels of the earth. In: Caira, J.N. & Jensen, K. (Eds.), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. University of Kansas, Natural History Museum, Special Publication No. 25. Natural History Museum, University of Kansas, Lawrence, Kansas, pp. 1–20.
  8. Caira, J.N., Healy, J.C., Marques, F.P.L. & Jensen, K. (2017b) Three new genera of rhinebothriidean cestodes from stingrays in southeast Asia. Folia Parasitologica, 64, 1–18. https://doi.org/10.14411/fp.2017.008
  9. Caira, J.N., Jensen, K., Hayes, C. & Ruhnke, T.R. (2020) Insights from new cestodes of the crocodile shark, Pseudocarcharias kamoharai (Lamniformes:Pseudocarchariidae), prompt expansion of Scyphyophyllidum and formal synonymization of seven phyllobothriidean genera–at last! Journal of Helmintology, 94 (e132), 1–25. https://doi.org/10.1017/S0022149X20000036
  10. Chervy, L. (2009) Unified terminology for cestode microtriches: a proposal from the international workshops on Cestode systematics in 2002-2008. Folia Parasitologica, 56 (3), 199–230. https://doi.org/10.14411/fp.2009.025
  11. Chevreux, B., Wetter, T. & Suhai, S. (1999) Genome sequence assembly using trace signals and additional sequence information. In: German conference on bioinformatics, Hanover, Germany, Vol. 99. Hanover, Germany, pp. 45–56.
  12. Clopton, R.E. (2004) Standard nomenclature and metrics of plane shapes for use in gregarine taxonomy. Comparative Parasitology, 71 (2), 130–140. https://doi.org/10.1654/4151
  13. Ewing, B. & Green, P. (1998) Base-calling of automated sequencer traces using Phred II. Error probabilities. Genome Research, 8, 186–194. https://doi.org/10.1101/gr.8.3.186
  14. Ewing, B., Hillier, L., Wendl, M.C. & Green, P. (1998) Base-calling of automated sequencer traces using Phred I. Accuracy assessment. Genome Research, 8, 175–185. https://doi.org/10.1101/gr.8.3.175
  15. Floeter, S.R., Rocha, L.A., Robertson, D.R., Joyeux, J.C., Smith-Vaniz, W.F., Wirtz, P., Edwards, A.J., Barreiros, J.P., Ferreira, C.E.L., Gasparini, J.L., Brito, A., Falcón, J.M., Bowen, B.W. & Bernardi, G. (2008) Atlantic reef fish biogeography and evolution. Journal of Biogeography, 35 (1), 22–47. https://doi.org/10.1111/j.1365-2699.2007.01790.x
  16. Goloboff, P.A., Farris, J.S. & Nixon, K.C. (2008) Tnt, a free program for phylogenetic analysis. Cladistics, 24, 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
  17. Gordon, D., Abajian, C. & Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Research, 8, 195–202. https://doi.org/10.1101/gr.8.3.195
  18. Gordon, D., Desmarais, C. & Green, P. (2001) Automated finishing with autofinish. Gemome Research, 11, 614–625. https://doi.org/10.1101/gr.171401
  19. Hahn, C., Bachmann, L. & Chevreux, B. (2013) Reconstructing mitochondrial genomes directly from next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Research, 41 (13), e129. https://doi.org/10.1093/nar/gkt371
  20. Healy, C.J., Caira, J.N., Jensen, K., Webster, B.L. & Littlewood, D.T.J. (2009) Proposal for a new tapeworm order, rhinebothriidea. International Journal for Parasitology, 3, 497–511. https://doi.org/10.1016/j.ijpara.2008.09.002
  21. Herzog, K.S. & Jensen, K. (2018) Five new species of the tapeworm genus Anthocephalum (Rhinebothriidea: Anthocephaliidae) parasitizing a single species of indo-pacific stingray and a revised diagnosis of the genus. Journal of Parasitology, 104 (5), 505–522. https://doi.org/10.1645/18-53
  22. Herzog, K.S., Caira, J.N., Kar, P.K. & Jensen, K. (2023) Novelty and phylogenetic affinities of a new family of tapeworms (Cestoda: Rhinebothriidea) from endangered sawfish and guitarfish. International Journal for Parasitology, 53 (7), 347–362. https://doi.org/10.1016/j.ijpara.2023.02.007
  23. Hodge, J.R., Read, C.I., Bellwood, D.R. & van Herwerden, L. (2013) Evolution of sympatric species: a case study of the coral reef fish genus Pomacanthus (Pomacanthidae). Journal of Biogeography, 40 (9), 1676–1687. https://doi.org/10.1111/jbi.12124
  24. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) Modelfinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. https://doi.org/10.1038/nmeth.4285
  25. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. (2002) Mafft: a novel method for rapid multiple sequence alignment based on fast fourier transform. TRENDS in Parasitology, 30 (14), 3059–3066. https://doi.org/10.1093/nar/gkf436
  26. Kishino, H., Miyata, T. & Hasegawa, M. (1990) Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. Journal of Molecular Evolution, 31, 151–160. https://doi.org/10.1007/BF02109483
  27. Larsson, A. (2014) Aliview: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30 (22), 3276–3278. https://doi.org/10.1093/bioinformatics/btu531
  28. Last, P.R., Naylor, G.J. & Manjaji-Matsumoto, B.M. (2016) A revised classification of the family Dasyatidae (Chondrichthyes: Myliobatiformes) based on new morphological and molecular insights. Zootaxa, 4139 (3), 345–368. https://doi.org/10.11646/zootaxa.4139.3.2
  29. Lessios, H. & Robertson, D. (2006) Crossing the impassable: genetic connections in 20 reef fishes across the eastern pacific barrier. Proceedings of the Royal Society B: Biological Sciences, 273 (1598), 2201–2208. https://doi.org/10.1098/rspb.2006.3543
  30. Linton, E. (1890) Notes on Entozoa of marine fishes of New England, with descriptions of several new species. Part II. United States Commision of Fish and Fisheries, 15, 718–899. https://doi.org/10.5962/bhl.title.995
  31. Little, T.J., Watt, K. & Ebert, D. (2006) Parasite-host specificity: Experimental studies on the basis of parasite adaptation. The Society for the Study of Evolution, 60 (1), 31–38. https://doi.org/10.1111/j.0014-3820.2006.tb01079.x
  32. Machado, D., Lyra, M. & Grant, T. (2016) Mitogenome assembly from genomic multiplex libraries: comparison of strategies and novel mitogenomes for five species of frogs. Molecular Ecology Resources, 16 (3), 686–693. https://doi.org/10.1111/1755-0998.12492
  33. Marques, F.P.L. & Caira, J.N. (2016) Pararhinebothroides – neither the sister-taxon of Rhinebothroides nor a valid genus. Journal of Parasitology, 102(2), 249–259. https://doi.org/10.1645/15-894
  34. Matzke, N.J. (2013a) BioGeoBEARS: BioGeography with Bayesian (and Likelihood) Evolutionary Analysis in R Scripts. Available from: http://phylo.wikidot.com/biogeobears (accessed 6 April 2022)
  35. Matzke, N.J. (2013b) Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Frontiers of Biogeography, 5 (4), 242–248. https://doi.org/10.21425/F5FBG19694
  36. Matzke, N.J. (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Systematic Biology, 63 (6), 951–970. https://doi.org/10.1093/sysbio/syu056
  37. Nguyen, L.-T., Schmidt, H.A., Von Haeseler, A. & Minh, B.Q. (2015) IQ-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular biology and evolution, 32 (1), 268–274. https://doi.org/10.1093/molbev/msu300
  38. Nixon, K.C. (1999) The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics, 15 (4), 407–414. https://doi.org/10.1111/j.1096-0031.1999.tb00277.x
  39. Page, R.D.M. (1993) Parasites, phylogeny and cospeciation. International journal for parasitology, 23 (4), 499–506. https://doi.org/10.1016/0020-7519(93)90039-2
  40. Pleijel, F., Jondelius, U., norlinder, E., Nygren, A., Oxelman, B., Shander, C., Sundberg, P. & Thollesson, M. (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetics studies. Molecular Phylogenetics and Evolution, 48, 369–371. https://doi.org/10.1016/j.ympev.2008.03.024
  41. Poulin, R. (1992) Determinants of host-specificity in parasites of freshwater fishes. International Journal for Parasitology, 22 (6), 753–758. https://doi.org/10.1016/0020-7519(92)90124-4
  42. Ree, R.H. & Smith, S.A. (2008) Maximum Likelihood Inference of Geographic Range Evolution by Dispersal, Local Extinction, and Cladogenesis. Systematic Biology, 57 (1), 4–14. https://doi.org/10.1080/10635150701883881
  43. Reyda, F.B., Healy, C.J., Haslach, A.R., Ruhnke, T.R., Aprill, T.L., Bergman, M.P., Daigler, A.L., Dedrick, E.A., Delgado, I., Forti, K.S., Herzog, K.S., Russell, R.S. & Willsey, D.D. (2016) A new genus of rhinebothriidean cestodes from batoid elasmobranchs, with the description of five new species and two new combinations. Folia Parasitologica, 63, 1–28. https://doi.org/10.14411/fp.2016.038
  44. Ronquist, F. & Sanmartín, I. (2011) Phylogenetic methods in biogeography. Annual Review of Ecology, Evolution, and Systematics, 42 (1), 441–464. https://doi.org/10.1146/annurev-ecolsys-102209-144710
  45. Ruhnke, T.R. (1994) Resurrection of Anthocephalum linton, 1890 (Cestoda: Tetraphyllidea) and taxonomic information on five proposed members. Systematic Parasitology, 29 (1), 159–176. https://doi.org/10.1007/BF00009673
  46. Ruhnke, T.R. & Seaman, H.B. (2009) Three new species of Anthocephalum Linton, 1890 (Cestoda:Tetraphyllidea) from dasyatid stingrays of the gulf of California. Systematic Parasitology, 72, 81–95. https://doi.org/10.1007/s11230-008-9170-6
  47. Ruhnke, T.R., Caira, J.N. & Cox, A. (2015) The Cestode order Rhinebothriidea no longer family-less: a molecular phylogenetic investigation with erection of two new families and description of eight new species of Anthocephalum. Zootaxa, 3904 (1), 51–81. https://doi.org/10.11646/zootaxa.3904.1.3
  48. Ruhnke, T.R., Reyda, F.B. & Marques, F.P.L. (2017) Rhinebothriidea Healy, Caira, Jensen, Webster & Littlewood, 2009. In: Caira, J.N. & Jensen, K. (Eds.), Planetary Biodiversity Inventory (2008–2017): Tapeworms from Vertebrate Bowels of the Earth. No. 25. University of Kansas, Natural History Museum, Special Publication No. 25. Natural History Museum, University of Kansas, Lawrence, Kansas, pp. 327–348.
  49. Santos, J.V., Trevisan, B. & Marques, F.P.L. (2020) The first report and description of a new species of Rhinebothrium from a dasyatid stingray from the brazilian northeastern coast with a review of the distribution of the genus throughout endemic marine ecoregions. Journal of Parasitology, 106 (6), 809–817. https://doi.org/10.1645/19-194
  50. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J., White, D.J., Hartenstein, V., Eliceiri, K., Tomancak, P. & Cardona, A. (2012) Fiji: an open-source platform for biological-image analysis. Nature Methods, 9, 676–682. https://doi.org/10.1038/nmeth.2019
  51. Shimodaira, H. & Hasegawa, M. (1999) Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution, 16 (8), 1114–1114. https://doi.org/10.1093/oxfordjournals.molbev.a026201
  52. Shimodaira, H. (2002) An Approximately Unbiased Test of Phylogenetic Tree Selection. Systematic Biology, 51 (3), 492–508. https://doi.org/10.1080/10635150290069913
  53. Southwell, T. (1925) A monograph on the tetraphyllidea with notes on related cestodes. Memoirs of the Liverpool School of Tropical Medicine, New Series, 2, 146–182.
  54. Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferndanã, Z.A., Finlayson, M.B.S,H., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, K.D., McManus, E., Molnar, J., Recchia, C.A. & Robertson, J. (2007) Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. BioScience, 57 (7), 573–583. https://doi.org/10.1641/B570707
  55. Strimmer, K. & Rambaut, A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society B, 269 (1487), 137–142. https://doi.org/10.1098/rspb.2001.1862
  56. Trevisan, B., Primon, J.F. & Marques, F.P.L. (2017) Systematics and diversification of Anindobothrium Marques, Brooks & Lasso, 2001 (Eucestoda: Rhinebothriidea). PLoS ONE, 12 (9), e0184632. https://doi.org/10.1371/journal.pone.0184632
  57. Trevisan, B., Alcantara, D., Machado, D., Marques, F.P.L. & Lahr, D. (2019) Genome skimming is a low-cost and robust strategy to assemble complete mitochondrial genomes from ethanol preserved specimens in biodiversity studies. PeerJ, 7, e7595. https://doi.org/10.7717/peerj.7543
  58. Trevisan, B., Machado, D., Lahr, D. & Marques, F.P.L. (2021) Comparative characterization of mitogenomes from five orders of cestodes (eucestoda: Tapeworms). Frontiers in Genetics, 12, 788871. https://doi.org/10.3389/fgene.2021.788871
  59. Vaidya, G., Lohman, D.J. & Meier, R. (2011) Sequencematrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics, 27 (2), 171–180. https://doi.org/10.1111/j.1096-0031.2010.00329.x
  60. Varo´n, A., Vinh, L.S. & Wheeler, W.C. (2010) POY version 4: phylogenetic analysis using dynamic homologies. Cladistics, 26, 72–85. https://doi.org/10.1111/j.1096-0031.2009.00282.x
  61. Vellutini, B.C. & Marques, F.P.L. (2014) WormBox. Available from: https://github.com/nelas/WormBox (accessed 8 January 2019)
  62. Wheeler, W. (1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics, 12 (1), 1–9. https://doi.org/10.1006/clad.1996.0001
  63. Wheeler, W.C. (2003) Iterative pass optimization of sequence data. Cladistics, 19 (3), 254–260. https://doi.org/10.1111/j.1096-0031.2003.tb00368.x
  64. Windsor, D.A. (1998) Controversies in parasitology most of the species on earth are parasites. International Journal for Parasitology, 28 (1998), 1939–1941. https://doi.org/10.1016/S0020-7519(98)00153-2
  65. Yu, Y., Harris, A., Blair, C. & He, X. (2015) RASP (reconstruct ancestral state in phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 87, 46–49. https://doi.org/10.1016/j.ympev.2015.03.008
  66. Zwickl, D.J. (2006) Genetic Algorithm Approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. PhD Thesis, The University of Texas, Austin, Texas, 115 pp.