Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-17
Page range: 401-425
Abstract views: 233
PDF downloaded: 11

Redescription of the highly specialized aquatic †Tigrivia and the classification of the Mesozoic †Coptoclavidae (Coleoptera, Adephaga, Dytiscoidea)

School of Earth Sciences and Engineering; Guangdong Provincial Key Lab of Geological Processes and Mineral Resources; Sun Yat- sen University; Guangzhou 510275; China; School of Ecology/State Key Laboratory of Biocontrol; Shenzhen Campus of Sun Yat-sen University; Shenzhen 518107; China
Institut für Zoologie und Evolutionsforschung; Friedrich-Schiller-Universität Jena; Jena 07743; Germany
State Key Laboratory of Cellular Stress Biology; School of Life Sciences; Xiamen University; Xiamen 361105; China; Yingliang Stone Natural History Museum; Nan’an 362300; China
School of Ecology/State Key Laboratory of Biocontrol; Shenzhen Campus of Sun Yat-sen University; Shenzhen 518107; China; Yunnan Key Laboratory for Palaeobiology; Yunnan University; Kunming 650091; China
Coleoptera Mesozoic Cretaceous Coptoclavidae Gyrinidae † Tigrivia parallel evolution water beetles

Abstract

Tigrivia baii, a highly specialized aquatic beetle assigned to the adephagan †Coptoclavidae, is redescribed and documented in detail. The observed morphological features are discussed with respect to function, phylogenetic significance, and the current classification of the Mesozoic family. Cladistic analyses indicate that †Tigrivia is the sister taxon of †Coptoclava. Both may be closely related with †Daohugounectes, but this was not confirmed by the analyses. †Tigrivia is a highly specialized genus, more advanced than the closely related †Coptoclava, showing a range of features suggesting evolutionary parallels with Gyrinidae, i.e. long raptorial forelegs, a very small prosternal process, an unusually large mesoventrite without hexagonal groove, apically truncated elytra, and exposed appendices of abdominal segment VIII. However, a detailed assessment of these features and the phylogenetic analysis revealed that these derived characteristics have evolved independently in †Tigrivia and whirligig beetles. †Tigrivia and other beetles in †Coptoclavidae were likely facultative surface hunters, but less specialized than Gyrinidae, which can swim rapidly on the surface film with paddle-like short middle and hind legs. In any case †Tigrivia and †Coptoclava were active predators, likely preying on small fishes and amphibian larvae. †Coptoclavidae is not monophyletic, and the same is probably true for most of the subfamilies, especially †Necronectinae (= †Timarchopsinae). While many coptoclavid taxa display subdivided compound eyes with an upper and lower subunit, this feature is not a synapomorphy since it is not found in all genera. Groups with metacoxae of a haliplid or trachypachid type, with the mesal walls not fused and with large posterior plates, apparently do not belong to Dytiscoidea, and should be removed from †Coptoclavidae. The rest of the family, characterized by extensively fused mesal metacoxal walls and largely reduced coxal plates belong to a clade comprising all dytiscoid families except for Noteridae and Meruidae.

 

References

  1. Alarie, Y., Short, AEZ., Garcia, M. & Joly, L. (2011) Larval morphology of Meruidae (Coleoptera: Adephaga) and its phylogenetic implications. Annals of the Entomological Society of America, 104, 25–36. https://doi.org/10.1603/AN10054
  2. Balke, M. & Hendrich, L. (2016) Dytiscidae Leach 1915. In: Beutel, R.G. & Leschen, R.A.B. (Eds), Coleoptera, Vol. 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). Handbook of Zoology Vol. IV, Arthropoda: Insecta, 2nd ed. Walter De Gruyter, Berlin and New York, pp. 118–140.
  3. Bao, L., Li, L., Niu, K., Wang, N., Kroeck, D.M. & Bao, T. (2023) Retracted: A new aquatic beetle (Adephaga: Coptoclavidae) from the Middle Jurassic Daohugou Biota. The Anatomical Record, 306 (8), E1–E6. https://doi.org/10.1002/ar.25221
  4. Bao, T., Rust, J. & Wang, B. (2018) Systematics, phylogeny and taphonomy of Cretaceous Psephenidae (Insecta: Coleoptera) from Burmese amber. Palaeontographica, Abteilung A, 310 (2), 131–159. https://doi.org/10.1127/0375-0442/2018/0086
  5. Batelka, J., Prokop, J., Pohl, H., Bai, M., Zhang, W. & Beutel, R.G. (2019) Highly specialized Cretaceous beetle parasitoids (Ripiphoridae) identified with optimized visualization of microstructures. Systematic Entomology, 44 (2), 396–407. https://doi.org/10.1111/syen.12331
  6. Belkaceme, T. (1991) Skelet und Muskulatur des Kopfes und Thorax von Noterus laevis Sturm. Ein Beitrag zur Morphologie und Phylogenie der Noteridae (Coleoptera: Adephaga). Stuttgarter Beiträge zur Naturkunde, Series A, 462, 1–94.
  7. Bell, R.T. (1967) Coxal cavities and the classification of the Adephaga (Coleoptera). Annals of the Entomological Society of America, 60, 101–107. https://doi.org/10.1093/aesa/60.1.101
  8. Beutel, R.G. (1986) Skelet und Muskulatur des Kopfes und Thorax von Hygrobia tarda (Herbst). Ein Beitrag zur Klärung der phylogenetischen Beziehungen der Hydradephaga (Insecta: Coleoptera). Stuttgarter Beiträge zur Naturkunde, Seris A, 388, 1–54.
  9. Beutel, R.G. (1988) Studies of the metathorax of the trout-stream beetle, Amphizoa lecontei Matthews (Coleoptera: Amphizoidae): Contribution towards clarification of the systematic position of Amphizoidae. International Journal of Insect Morphology and Embryology, 17 (1), 63–81. https://doi.org/10.1016/0020-7322(88)90031-1
  10. Beutel, R.G. (1989) The head of Spanglerogyrus albiventris Folkerts (Coleoptera: Gyrinidae). Contribution towards clarification of the phylogeny of Gyrinidae and Adephaga. Zoologische Jahrbücher für Anatomie, 118 (4), 431–461.
  11. Beutel, R.G. (1990) Phylogenetic analysis of the family Gyrinidae (Coleoptera) based on meso- and metathoracic characters. Quaestiones Entomologicae, 26, 163–191.
  12. Beutel, R.G. (1992) Phylogenetic analysis of thoracic structures of Carabidae (Coleoptera). Journal of Zoological Systematics and Evolutionary Research, 30, 53–74. https://doi.org/10.1111/j.1439-0469.1992.tb00390.x
  13. Beutel, R.G., Balke, M. & Steiner, W.E. (Jr.) (2006) The systematic position of Meruidae (Coleoptera, Adephaga) and the phylogeny of the smaller aquatic adephagan beetle families. Cladistics, 22 (2), 102–131. https://doi.org/10.1111/j.1096-0031.2006.00092.x
  14. Beutel, R.G. & Haas, F. (2000) Phylogenetic relationships of the suborders of Coleoptera (Insecta). Cladistics, 16, 103–141. https://doi.org/10.1111/j.1096-0031.2000.tb00350.x
  15. Beutel, R.G., Ribera, I., Fikáček, M., Vasilikopoulos, A., Misof, B. & Balke, M. (2020) The morphological evolution of the Adephaga (Coleoptera). Systematic Entomology, 45 (2), 378–395. https://doi.org/10.1111/syen.12403
  16. Beutel, R.G. & Roughley, R.E. (1988) On the systematic position of the family Gyrinidae (Coleoptera: Adephaga). Journal of Zoological Systematics and Evolutionary Research, 26 (5), 380–400. https://doi.org/10.1111/j.1439-0469.1988.tb00324.x
  17. Beutel, R.G. & Ruhnau, S. (1990) Phylogenetic analysis of the genera of Haliplidae (Coleoptera) based on characters of adults. Aquatic Insects, 12 (1), 1–17. https://doi.org/10.1080/01650429009361381
  18. Beutel, R.G., Wang, B., Tan, J., Ge, S., Ren, D. & Yang, X. (2013) On the phylogeny and evolution of Mesozoic and extant lineages of Adephaga (Coleoptera, Insecta). Cladistics, 29 (2), 147–165. https://doi.org/10.1111/j.1096-0031.2012.00420.x
  19. Beutel, R.G., Xu, C., Jarzembowski, E., Kundrata, R., Boudinot, B.E., McKenna, D.D. & Goczał, J. (2024) The evolutionary history of Coleoptera (Insecta) in the late Palaeozoic and the Mesozoic. Systematic Entomology, 49, 1–34. https://doi.org/10.1111/syen.12623
  20. Beutel, R., Yan, E., Richter, A., Büsse, S., Miller, K., Yavorskaya, M. & Wipfler, B. (2017) The head of Heterogyrus milloti (Coleoptera: Gyrinidae) and its phylogenetic implications. Arthropod Systematics and Phylogeny, 75, 261–280. https://doi.org/10.3897/asp.75.e31903
  21. Beutel, R.G., Yan, E., Yavorskaya, M., Büsse, S., Gorb, S.N. & Wipfler, B. (2019) On the thoracic anatomy of the Madagascan Heterogyrus milloti and the phylogeny of Gyrinidae (Coleoptera). Systematic Entomology, 44 (2), 336–360. https://doi.org/10.1111/syen.12325
  22. Bils, W. (1976) Das Abdomenende weiblicher, terrestrisch lebender Adephaga (Coleoptera) und seine Bedeutung für die Phylogenie. Zoomorphologie, 84, 113–193. https://doi.org/10.1007/BF00999711
  23. Bode, A. (1953) Die Insektenfauna des ostniedersächsischen oberen Lias. Palaeontographica, 103 (1), 1–375.
  24. Boudinot, B.E., Yan, E.V., Prokop, J., Luo, X.Z. & Beutel, R.G. (2023) Permian parallelisms: reanalysis of †Tshekardocoleidae sheds light on the earliest evolution of the Coleoptera. Systematic Entomology, 48 (1), 69–96. https://doi.org/10.1111/syen.12562
  25. Burmeister, E.G. (1976) The ovipositor of the Hydradephaga (Coleoptera) and its phylogenetic significance, with special considerations of the Dytiscidae. Zoomorphologie, 85, 165–257. https://doi.org/10.1007/BF00993515
  26. Burmeister, E.G. (1980). Funktionsmorphologie und Evolution des Ovipositor der Adephaga (Coleoptera). Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 24, 89–184.
  27. Burmeister, E.G. (1990) The female genital structures of Spanglerogyrus albiventris Folkerts 1979. A contribution to the systematic position of the Gyrinidae. Spixiana, 13, 253–265.
  28. Cai, C., Lawrence, J.F., Ślipiński, A. & Huang, D. (2015) Jurassic artematopodid beetles and their implications for the early evolution of Artematopodidae (Coleoptera). Systematic Entomology, 40 (4), 779–788. https://doi.org/10.1111/syen.12131
  29. Chang, S., Zhang, H., Renne, P. & Fang, Y. (2009) High–precision 40Ar/39Ar age for the Jehol Biota. Palaeogeography, Palaeoclimatology, Palaeoecology, 280 (1–2), 94–104. https://doi.org/10.1016/j.palaeo.2009.06.021
  30. Deichmüller, J.V. (1886) Die Insecten aus dem lithographischen Schiefer im Dresdener Museum. Theodor Fischer, Cassel, x + 84 pp., V pls.
  31. Delclòs, X., Peñalver, E., Barrón, E., Peris, D., Grimaldi, D.A., Holz, M., Labandeira, C.C., Saupe, E.E., Scotese, C.R., Solórzano-Kraemer, M., Álvarez-Parra, S., Arillo, A., Azar, D., Cadena, E.A., Dal Corso, J., Kravčec, J., Monleón-Getino, A., Nel, A., Peyrto, D., Bueno-Cebollada, C.A., Gallardo, A., González-Fernández, B., Goula, M., Jaramillo, C., Kania-Kłosok, I., López-Del Valle, R., Lozano, R.P., Meléndez, N., Menor-Salván, C., Peña-Kairath, C., Perrichot, V., Rodrigo, A., Sánchez-García, A., Santer, M., Sarto i Monteys, V., Uhl, D., Viejo, J.L. & Pérez-de la Fuente, R. (2023) Amber and the Cretaceous Resinous Interval. Earth-Science Reviews, 243 (104486), 1–15. https://doi.org/10.1016/j.earscirev.2023.104486
  32. Dressler, C. & Beutel, R. (2010) The morphology and evolution of the adult head of Adephaga (Insecta: Coleoptera). Arthropod Systematics and Phylogeny, 68, 239–287. https://doi.org/10.3897/asp.68.e31730
  33. Dressler, C., Ge, S.Q. & Beutel, R.G. (2011) Is Meru a specialized noterid (Coleoptera, Adephaga)? Systematic Entomology, 36 (4), 705–712. https://doi.org/10.1111/j.1365-3113.2011.00585.x
  34. Fikáček, M., Prokin, A., Yan, E., Yue, Y., Wang, B., Ren, D. & Beattie, R. (2014) Modern hydrophilid clades present and widespread in the Late Jurassic and Early Cretaceous (Coleoptera: Hydrophiloidea: Hydrophilidae). Zoological Journal of the Linnean Society, 170 (4), 710–734. https://doi.org/10.1111/zoj.12114
  35. Folkerts, G.W. (1979) Spanglerogyrus albiventris, a primitive new genus and species of Gyrinidae (Coleoptera) from Alabama. The Coleopterists Bulletin, 33, 1–8. https://doi.org/10.5962/p.371801
  36. Goloboff, P. (1999) NONA (no name). Version 2. Published by the author, Tucumán. [program]
  37. Goloboff, P.A., Farris, J.S. & Nixon, K.C. (2008) TNT, a free program for phylogenetic analysis. Cladistics, 24 (5), 774–786. https://doi.org/10.1111/j.1096-0031.2008.00217.x
  38. Gustafson, G.T., Michat, M.C. & Balke, M. (2020) Burmese amber reveals a new stem lineage of whirligig beetle (Coleoptera: Gyrinidae) based on the larval stage. Zoological Journal of the Linnean Society, 189, 1232–1248. https://doi.org/10.1093/zoolinnean/zlz161
  39. Hatch, M.H. (1927) The morphology of Gyrinidae. Papers of the Michigan Academy of Science, Arts and Letters, 7, 311–350.
  40. Hong, Y.C. (1982) Mesozoic fossil insects of Jinquan basin in Gansu province. Geological Publishing House, Beijing, 187 pp. [in Chinese]
  41. Hong, Y.C., Liang, S. & Hu, T. (1995) Study on geology and paleontological assemblage from Tuha Basin of Xinjiang, China. Geoscience, 9 (4), 435.
  42. Honomichl, K. (1975) Beitrag zur Morphologie des Kopfes der Imago von Gyrinus substriatus Stephens, 1829 (Coleoptera, Insecta). Zoologische Jahrbücher für Anatomie, 94, 218–295.
  43. ICZN (1999) International code of zoological nomenclature. 4th Edition. International Trust for Zoological Nomenclature, London, xxix + 306 pp.
  44. Jałoszyński, P., Luo, X., Hammel, J.U., Yamamoto, S. & Beutel, R.G. (2020) The mid-Cretaceous †Lepiceratus gen. nov. and the evolution of the relict beetle family Lepiceridae (Insecta: Coleoptera: Myxophaga). Journal of Systematic Palaeontology, 18 (13), 1127–1140. https://doi.org/10.1080/14772019.2020.1747561
  45. Larsén, O. (1966) On the morphology and function of the locomotor organs of the Gyrinidae and other Coleoptera. Opuscula Entomologica Supplementum, 30, 1–241.
  46. Liu, S.P., Wipfler, B. & Beutel, R.G. (2018) The unique locomotor apparatus of whirligig beetles of the tribe Orectochilini (Gyrinidae, Coleoptera). Journal of Zoological Systematics and Evolutionary Research, 56 (2), 196–208. https://doi.org/10.1111/jzs.12195
  47. Nachtigall, W. (1960) Über Kinematik, Dynamik und Energetik des Schwimmens einheimischer Dytisciden. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 43, 48–118. https://doi.org/10.1007/BF00351202
  48. Nachtigall, W. (1961) Funktionelle Morphologie, Kinematik und Hydromechanik des Ruderapparates von Gyrinus. Zeitschrift für Vergleichende Physiologie, 45, 193–226. https://doi.org/10.1007/BF00297764
  49. Nixon, K.C. (1999) Winclada (BETA). Version 0.9.9. Published by the author, Ithaca, New York. Available from: http://www.cladistics.com (accessed 13 January 2025)
  50. Ping, C. (1928) Study of the Cretaceous fossil insects of China. Palaeontologia Sinica, 13, 1–47.
  51. Pohl, H., Wipfler, B., Boudinot, B. & Beutel, R.G. (2021) On the value of Burmese amber for understanding insect evolution: Insights from †Heterobathmilla – an exceptional stem group genus of Strepsiptera (Insecta). Cladistics, 37 (2), 211–229. https://doi.org/10.1111/cla.12433
  52. Ponomarenko, A.G. (1961) About the systematic position of Coptoclava longipoda Ping (Insecta, Coleoptera). Paleontologicheskii Zhurnal, 3, 67–72.
  53. Ponomarenko, A.G. (1975) Coptoclava (Coleoptera) – a peculiar early Cretaceous aquatic beetle from East Asia. Transactions of the Joint Soviet Mongolian Paleontological Expedition, 2, 122–139. [in Russian]
  54. Ponomarenko, A.G. (1977) Suborder Adephaga, etc. In: Arnoldi, L.V., Zherikin, V.V., Nikritin, L.M. & Ponomarenko, A.G. (Eds.), Mesozoic Coleoptera. Trudy Paleonthologicheskogo Instituta Akademiya Nauk SSSR, 161, pp. 1–204. [in Russian]
  55. Ponomarenko, A.G. (1987) New Mesozoic aquatic beetles. Paleontologicheskii Zhurnal, 2, 83–97.
  56. Ponomarenko, A.G. (2003) Ecological evolution of beetles (Insecta: Coleoptera). Acta Zoologica Cracoviensia, 46 (Supplement), 319–328.
  57. Ponomarenko, A.G., Fedorenko, D.N. & Bashkuev, A.S. (2022) A new species of the beetle genus Holcoptera (Coleoptera: Coptoclavidae) from the Upper Triassic of east Ukraine. Russian Entomological Journal, 31 (2), 128–131. https://doi.org/10.15298/rusentj.31.2.06
  58. Ponomarenko, A.G., Prokin, A.A. & Bashkuev, A.S. (2015) Coptoclavid beetles (Insecta: Coleoptera: Adephaga) from the Triassic of Lower Franconia, Germany. Paleontological Journal, 49, 1334–1345. https://doi.org/10.1134/S0031030115120096
  59. Prokin, A.A., Makarov, K.V., Ponomarenko, A.G. & Bashkuev, A.S. (2013) New beetle larvae (Coleoptera: Coptoclavidae, Caraboidea, Polyphaga) from the Upper Triassic of Germany. Russian Entomologcal Journal, 22, 259–274.
  60. Prokin, A.A. & Ren, D. (2010) New Mesozoic diving beetles (Coleoptera, Dytiscidae) from China. Paleontological Journal, 44, 526–533. https://doi.org/10.1134/S0031030110050072
  61. Rohdendorf, B.B. (1961) The order Coleoptera: coleopterans or beetles. In: Rohdendorf, B.B. Becker-Migdisova, E.E., Martynova, O.M. & Sharov, A.G. (Eds), Paleozoic Insects of the Kuznetsky Basin. Trudy Paleonthologicheskogo Instituta Akademiya Nauk SSSR, 85, 412–463.
  62. Rothmeier, G. & Jäch, M.A. (1986) Spercheidae, the only filter-feeders among Coleoptera. In: Proceedings of the IV. European Congress of Entomology, Amsterdam, 1986, pp. 133–137.
  63. Salamanca, D.A. & Brown, F.D. (2018) Sub-functionalization of dorsal and ventral eyes in a whirligig beetle (Coleoptera: Gyrinidae). Neotropical Biodiversity, 4, 137–143. https://doi.org/10.1080/23766808.2018.1510567
  64. Schädel, M., Yavorskaya, M. & Beutel, R.G. (2022) The earliest beetle †Coleopsis archaica (Insecta: Coleoptera) – morphological re-evaluation using Reflectance Transformation Imaging (RTI) and phylogenetic assessment. Arthropod Systematics & Phylogeny, 80, 495–510. https://doi.org/10.3897/asp.80.e86582
  65. Soriano, C., Ponomarenko, A.G. & Delclòs, X. (2007) Coptoclavid beetles (Coleoptera: Adephaga) from the Lower Cretaceous of Spain: a new feeding strategy in beetles. Palaeontology, 50, 525–536. https://doi.org/10.1111/j.1475-4983.2007.00642.x
  66. Thompson, R.G. (1979) Larvae of North American Carabidae with a key to the tribes. In: Erwin, T.L., Ball, G.E., Whitehead, D.R. & Halpern, R.L. (Eds.), Carabid beetles: Their evolution, natural history and classification. W. Junk, The Hague, pp. 209–291. https://doi.org/10.1007/978-94-009-9628-1_11
  67. Thomson, U., Ross, A.J. & Davidson, P. (2017) Mesozoic Holcoptera (Coleoptera: Coptoclavidae) from England and the United States. Proceedings of the Geologists’ Association, 128, 659–674. https://doi.org/10.1016/j.pgeola.2017.05.009
  68. Vasilikopoulos, A., Balke, M., Kukowka, S., Pflug, J.M., Martin, S., Meusemann, K., Hendrich, L., Mayer, Ch., Maddison, D.R., Niehuis, O., Beutel, R.G. & Misof, B. (2021) Phylogenomic analyses clarify the pattern of evolution of Adephaga (Coleoptera) and highlight phylogenetic artifacts due to model misspecification and excessive data trimming. Systematic Entomology, 46, 991–1018. https://doi.org/10.1111/syen.12508
  69. Vondel, B.J. van (2016) 7.2 Haliplidae Aubé, 1836. In: Beutel, R.G. & Leschen, R.A. (Eds.), Coleoptera, Beetles. Morphology and Systematics. Handbook of Zoology Vol. IV, Arthropoda: Insecta, 2nd ed. Walter de Gruyter, Berlin/Boston, pp. 481–486.
  70. Wang, B., Ponomarenko, A.G. & Zhang, H.C. (2009) A new coptoclavid larva (Coleoptera: Adephaga: Dytiscoidea) from the Middle Jurassic of China, and its phylogenetic implication. Paleontological Journal, 43, 652–659. https://doi.org/10.1134/S0031030109060082
  71. Wang, B., Ponomarenko, A.G. & Zhang, H. (2010) Middle Jurassic Coptoclavidae (Insecta: Coleoptera: Dytiscoidea) from China: a good example of mosaic evolution. Acta Geologica Sinica‐English Edition, 84 (4), 680–687. https://doi.org/10.1111/j.1755-6724.2010.00272.x
  72. Xu, X., Zhou, Z., Wang, Y. & Wang, M. (2019) A review and prospects of the research on the Jehol biota. Science in China: Geoscience, 49, 1491–1511. [in Chinese]
  73. Yan, E., Beutel, R.G. & Lawrence, J.F. (2018) Whirling in the late Permian: ancestral Gyrinidae show early radiation of beetles before Permian-Triassic mass extinction. BMC Evolutionary Biology, 18, 33. https://doi.org/10.1186/s12862-018-1139-8
  74. Yan, E., Beutel, R.G., Lawrence, J.F., Yavorskaya, M.I., Hörnschemeyer, T., Pohl, H., Vassilenko, D.V., Bashkuev, A.S. & Ponomarenko, A.G. (2020) Archaeomalthus – (Coleoptera, Archostemata) a “ghost adult” of Micromalthidae from Upper Permian deposits of Siberia? Historical Biology, 32, 1019–1027. https://doi.org/10.1080/08912963.2018.1561672
  75. Yan, E., Beutel, R.G. & Ponomarenko, A.G. (2017a) Peltosynidae – a new beetle family from the Middle-Late Triassic of Kirghyzia – its affinities to Polyphaga (Insecta, Coleoptera) and the groundplan of the megadiverse suborder. Journal of Systematic Palaeontology, 16, 515–530. https://doi.org/10.1080/14772019.2017.1313789
  76. Yan, E., Beutel, R.G. & Ponomarenko, A.G. (2017b) †Ademosynidae (Insecta: Coleoptera) – a new concept for a coleopteran key taxon and its phylogenetic affinities to the extant suborders. Palaeontologica Electronica, 20, 1–22. https://doi.org/10.26879/739
  77. Yan, E., Lawrence, J.F., Beattie, R. & Beutel, R.G. (2017c) At the dawn of the great rise: †Ponomarenkia belmonthensis (Insecta: Coleoptera), a new remarkable late Permian beetle from the Southern Hemisphere. Journal of Systematic Palaeontology, 16, 611–619. https://doi.org/10.1080/14772019.2017.1343259
  78. Yu, Z., He, H. & Zhou, Z. (2023) Geochronology of the Early Cretaceous volcano-sedimentary strata of the Chengde Basin northern Hebei, China: implications for spatio-temporal evolution of the Jehol Biota. Chinese Journal of Geophysics, 66, 4639–4653. [in Chinese]
  79. Zhang, Q., Zheng, D., Wang, B. & Zhang, H. (2022) A review of Triassic insects in China. Geological Society, London, Special Publications 521. Geological Society, London, pp. 16 pp. [pp. 45–60] https://doi.org/10.1144/SP521-2021-121
  80. Zhao, X., Zhao, X., Jarzembowski, E.A., Chen, L. & Wang, B. (2018) First record of adult Coptoclava longipoda Ping (Coleoptera: Coptoclavidae) from the Lower Cretaceous of Laiyang, China. Cretaceous Research, 92, 205–209. https://doi.org/10.1016/j.cretres.2018.08.013
  81. Zhou, Z., Barrett, P.M. & Hilton, J. (2003) An exceptionally preserved Lower Cretaceous ecosystem. Nature, 421, 807–814. https://doi.org/10.1038/nature01420