Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2025-02-25
Page range: 481-506
Abstract views: 112
PDF downloaded: 65

Revision of Schizopygopsis chengi Fang 1936 (Cypriniformes: Cyprinidae), with a description of a new subspecies

Key Laboratory of Adaptation and Evolution of Plateau Biota; Qinghai Key Laboratory of Animal Ecological Genomics; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining; China
Key Laboratory of Adaptation and Evolution of Plateau Biota; Qinghai Key Laboratory of Animal Ecological Genomics; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining; China
Key Laboratory of Adaptation and Evolution of Plateau Biota; Qinghai Key Laboratory of Animal Ecological Genomics; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining; China; University of Chinese Academy of Sciences; Beijing; China
Key Laboratory of Adaptation and Evolution of Plateau Biota; Qinghai Key Laboratory of Animal Ecological Genomics; Northwest Institute of Plateau Biology; Chinese Academy of Sciences; Xining; China; Northwest Institute of Plateau Biology; Chinese Academy of Sciences No. 23 Xinning Road; Xining; Qinghai 810001; China
Pisces Schizopygopsis chengi duokeheensis Qinghai-Tibetan Plateau Taxonomy species delimitation subspecies

Abstract

The species status of Schizopygopsis chengi, which is defined as a subspecies of Schizopygopsis malacanthus, is under debate. In the present study, comprehensive morphological and molecular analyses were performed on S. chengi, its closest relatives S. malacanthus and other Schizopygopsis fishes. The results showed that S. chengi did not form a sister lineage to S. malacanthus, with morphological differences in unbranched rays of the dorsal fin. The morphological and molecular evidence indicated that S. chengi was a valid species and was separated from S. malacanthus. By examining specimens of S. chengi from the Marke River, Keke River, Duoke River and Baoxing River, populations from the Duoke River showed morphological characteristics of mouth inferior, transverse oral fissure, relative long predorsal length than other geographic populations. The monophyly of population from Duoke River was strongly supported by mitochondrial sequence datasets. Based on morphological and molecular evidence, specimen from Duoke River is considered a newly identified subspecies and named as Schizopygopsis chengi duokeheensis.

 

References

  1. Andrew, R., Drummond, A.J., Dong, X., Guy, B. & Suchard, M.A. (2018) Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology, 7 (5), 901–904. http://doi.org/10.1093/sysbio/syy032.
  2. Burland, T.G. (2000) DNASTAR's Lasergene sequence analysis software. Methods in Molecular Biology, 132, 71–91. http://doi.org/10.1385/1-59259-192-2:71
  3. Cao, W.X., Chen, Y.Y., Wu, Y.F. & Zhu, S.Q. (1981) Origin and evolution of Schizothoracine fishes in relation to the upheaval of the Xizang Plateau. Beijing Science Publisher, Beijing. [in Chinese]
  4. Cao, W.X. & Deng, Z.L. (1962) Schizothoracine fishes of western Sichuan and adjacent regions. Acta Hyfrobiogica Sinica, 2, 27–53.
  5. Chen, Y.F. & Cao, W.X. (2000) Fauna Sinica, Osteichthyes, Cypriniformes, Schizothoracinae. Beijing Science Publisher, Beijing. [unknown pagination, in Chinese]
  6. Ding, R. (1994) The Fishes of Sichuan. Sichuan Publishing House of Science and Technology, Chengdu, 641 pp. [in Chinese]
  7. Du, Z.J., Wu, J.Y., Lin, R.N., Zhu, G.X., Xie, M., Wang. Q., Jiang, Y.Z. & Wen, A.X. (2016) Complete mitochondrial genome of Schizopygopsis chengi (Cyprinidae, Schizothoracinae, Schizopygopsis). Mitochondrial DNA, Part A, 27, 3717–3718. http://doi.org/10.3109/19401736.2015.1079872
  8. Fang, B.W. (1936) On some Schizothoracid Fishes from western China Preserved in the National Research Institute of Biology, Academy Sinica. Sinensia, 7, 421–458.
  9. Garcia-Vega, A., Ruiz-Legazpi, J., Fuentes-Perez, J.F., Bravo-Cordoba, F.J. & Sanz-Ronda, F.J. (2023) Effect of thermo-velocity barriers on fish: influence of water temperature, flow velocity and body size on the volitional swimming capacity of northern straight-mouth nase (Pseudochondrostoma duriense). Journal of Fish Biology, 102, 689–706. http://doi.org/10.1111/jfb.15310
  10. Guindon, S. & Gascuel, O. (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704. http://doi.org/10.1080/10635150390235520
  11. Guo, Y., Sun, Z., He, X., Jin, W. & Chen, Y. (2021) Colored Atlas of Fishes in Sichuan. Beijing Science Press, Beijing, 475 pp. [in Chinese]
  12. Hou, F.X., Zhang, H.B., Wu, B., Zhang, X.Y. & Song, Z.B. (2013) Characterization of microsatellite loci in Schizopygopsis chengi chengi and their utilization in assessment of the genetic diversity in Schizopygopsis chengi baoxingensis. Biochemical Systematics and Ecology, 46, 50–54. http://doi.org/ 10.1016/j.bse.2012.09.007
  13. Kalyaanamoorthy, S., Minh, B.Q., Wong, T.K.F., von Haeseler, A. & Jermiin, L.S. (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nature Methods, 14, 587–589. http://doi.org/10.1038/nmeth.4285
  14. Katoh, K., Kuma, K., Toh, H. & Miyata, T. (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518. http://doi.org/10.1093/nar/gki198
  15. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. (2018) MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35, 1547–1549. http://doi.org/10.1093/molbev/msy096
  16. Leigh, J.W. & Bryant, D. (2015) PopART: Full-Feature Software for Haplotype Network Construction. Methods in Ecology and Evolution, 6 (9), 1110–1116. http://doi.org/10.1111/2041-210X.12410
  17. Li, D., Hu, W., Wang, Y., Zhu, Z., Fu, C., Li, D., Hu, W., Wang, Y., Zhu, Z. & Fu, C. 2009. Reduced swimming abilities in fast-growing transgenic common carp Cyprinus carpio associated with their morphological variations. Journal of Fish Biology, 74, 186–197. http://doi.org/10.1111/j.1095-8649.2008.02128.x
  18. Li, G., Peng, Z., Zhang, R., Tang, Y., Tong, C., Feng, C., Zhang, C. & Zhao, K. (2016) Mito-nuclear phylogeography of the cyprinid fish Gymnodiptychus dybowskii in the arid Tien Shan region of Central Asia. Biological Journal of the Linnean Society, 118, 304–314.
  19. https://doi.org/10.1111/bij.12724
  20. Li, G., Tang, Y., Zhang, R. & Zhao, K. (2016) Phylogeography of Diptychus maculatus (Cyprinidae) endemic to the northern margin of the QTP and Tien Shan region. BMC Evolutionary Biology, 16, 186. http://doi.org/10.1186/s12862-016-0756-3
  21. Li, H., Huang, Y., Li, Q., Chen, Y.Y., Liu, Y. & Liu, G.X. (2016) The complete mitochondrial genome of Schizopygopsis malacanthus (Teleostei, Cyprinidae, Schizopygopsis). Mitochondrial DNA, Part A, 27, 2062–2064. http://doi.org/ 10.3109/19401736.2014.947602
  22. Liu, C.H. (1964) Notes on the Fishes Fauna of Szechwan. Journal of Sichuan University (Natural Science), 2, 95–133.
  23. Liu, D., Hou, F., Liu, Q., Zhang, X., Yan, T. & Song, Z. (2015) Strong population structure of Schizopygopsis chengi and the origin of S. chengi baoxingensis revealed by mtDNA and microsatellite markers. Genetica, 143, 73–84. http://doi.org/ 10.1007/s10709-015-9815-8
  24. Liu, Q., Wang, S., Zhang, X.Y., Yue, B.S. & Song, Z.B. (2009) Limited genetic diversity of an endemic subspecies as inferred from the mitochondrial DNA control region. Hydrobiologia, 632, 371–376. http://doi.org/ 10.1007/s10750-009-9863-0
  25. Luo, Q., Tang, Q., Deng, L., Duan, Q. & Zhang, R.Y. (2023) A new cavefish of Sinocyclocheilus (Teleostei: Cypriniformes: Cyprinidae) from the Nanpanjiang River in Guizhou, China. Journal of Fish Biology, 104 (2), 484–496. http://doi.org/10.1111/jfb.15490
  26. Nichols, J.T. & Chu, Y.T. (1935) Comparative Studies on the Scales and on the Pharyngeals and Their Teeth in Chinese Cyprinids, with Particular Reference to Taxonomy and Evolution. Biology, 1935, 198.
  27. Puillandre, N., Brouillet, S. & Achaz, G. (2021) ASAP: assemble species by automatic partitioning. Molecular Ecology Resources, 21 (2), 609–620. http://doi.org/10.1111/1755-0998.13281
  28. Qi, D., Guo, S., Chao, Y., Kong, Q., Li, C., Xia, M., Xie, B. & Zhao, K. (2015) The biogeography and phylogeny of schizothoracine fishes (Schizopygopsis) in the Qinghai‐Tibetan Plateau. Zoologica Scripta, 44, 523–533.
  29. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. & Huelsenbeck, J.P. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61 (3), 539–542. http://doi.org/10.1093/sysbio/sys029
  30. Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E. & Sanchez-Gracia, A. (2017) DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Molecular Biology and Evolution, 34 (12), 3299–3302. http://doi.org/10.1093/molbev/msx248
  31. Sambrook, J., Fritsch, F.E. & Maniatis, T. (1982) Molecular Cloning: a Laboratory Manual. Cold Spring Harbor Laboratory Press, New York, 545 pp. [in English]
  32. Svozil, D.P., Baumgartner, L., Fulton, C.J., Kopf, R.K. & Watts, R.J. (2020) Morphological predictors of swimming speed performance in river and reservoir populations of Australian smelt Retropinna semoni. Journal of Fish Biology, 97 (6), 1632–1643. http://doi.org/10.1111/jfb.14494
  33. Whelan, N.V., Strong, E.E., Gladstone, N.S. & Mays, J.W. (2023) Using genomics, morphometrics, and environmental niche modeling to test the validity of a narrow-range endemic snail, Patera nantahala (Gastropoda, Polygyridae). ZooKeys, 1158, 91–120. http://doi.org/10.3897/zookeys.1158.94152
  34. Wu, Y. & Wu, C. (1992) The fishes of the Qinghai-Xizang plateau. Sichuan Publishing House of Science and Technology, Chengdu. [unknown pagination, in Chinese]
  35. Xiao, W., Zhang, Y. & Liu, H. (2001) Molecular systematics of Xenocyprinae (teleostei: cyprinidae): taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Moleclular Phylogenetics and Evolution, 18, 163–173.
  36. http://doi.org/10.1006/mpev.2000.0879
  37. Yu, C.J., Song, Z.B. & Yue, B.S. (2006) Taxonomic implications from phylogenetic relationships of subspecies of (Pisces: Cyprinidae) based on sequence analysis of cytochrome and mitochondrial DNA control region. Annals & Magazine of Natural History, 40 (44–46), 2569–2576. http://doi.org/10.1080/00222930601129463
  38. Zeng, Y., Chen, Y.B., Pan, B.Z. & Zhang, D.W. (2016) Complete mitochondrial genome of Schizopygopsis chengi baoxingensis (Teleostei: Cypriniformes: Cyprinidae). Mitochondrial DNA, Part A, 27, 1405–1406. http//doi.org/10.3109/19401736.2014.982557
  39. Zhang, D., Gao, F., Jakovlic, I., Zou, H., Zhang, J., Li, W.X. & Wang, G.T. (2020) PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20, 348–355. http//doi.org/10.1111/1755-0998.13096
  40. Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics, 29, 2869–2876. http//doi.org/10.1093/bioinformatics/btt499